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ABSTRACT

Temporal broadening of pulsar signals results from electron density fluctuations in the interstellar medium
that cause the radiation to travel along paths of different lengths. The theory of Gaussian fluctuations predicts
that the pulse temporal broadening should scale with the wavelength as �4 and with the dispersion measure
(DM; proportional to the distance to the pulsar) as DM2. However, for large dispersion measures,
DM > 20 pc cm�3, the observed scaling is �4DM4, contradicting the conventional theory. Although the
problem has existed for 30 years, there has been no resolution to this paradox. We suggest that scintillations
for distant pulsars are caused by non-Gaussian, spatially intermittent density fluctuations with a power-law–
like probability distribution. Such a probability distribution does not have a second moment, and therefore
the previously applied conventional Fokker-Planck theory does not hold. Instead, we propose to apply the
theory of Lévy distributions (so-called Lévy flights). We show that the observed scaling is recovered for large
DM if the density differences, DN, have Lévy distribution decaying as jDNj�5=3. In the thin-screen approxima-
tion, the corresponding tail of the time-profile of the arriving signal is estimated to be Ið�Þ / ��4=3.

Subject headings: ISM: kinematics and dynamics — ISM: structure — turbulence

1. INTRODUCTION

Intensity fluctuations of pulsars’ radiation result from the
scattering of radio waves by electron-density inhomo-
geneities in the interstellar medium (ISM). These fluctua-
tions are a signature of turbulent, nonequilibrium motion in
the ISM, and as the phenomenon of turbulence itself, they
have withstood full theoretical understanding for decades,
see, e.g., reviews by Sutton (1971) and Rickett (1977, 1990).
Observationally, the presence of electron density fluctua-
tions leads, among other effects, to temporal and angular
broadening of the pulsar image. These two effects are natu-
rally related—because of fluctuations of the refraction
index, different rays from a pulsar travel along paths of dif-
ferent shapes and the larger the deviation of the path from
the straight line, the broader the pulsar image and the
greater the time broadening of the arriving signal. Denoting
the angular width of the image as Dh, and using simple geo-
metric considerations, one estimates the arrival time broad-
ening as �d � ðD�Þ2d=c, where d is the distance to the pulsar
and c is the speed of light; see a more detailed discussion in
Blanford & Narayan (1985) and Gwinn, Bartel, & Cordes
(1993).

A ray propagating through the ISM encounters many
randomly distributed small ‘‘ prisms ’’ on its way that make
the scattering angle wander randomly. At each scattering
event, the angle deflection is proportional to �2 (see below),
where � is the wavelength of the scattered radiation. Taking
into account that the scattering angle is small and exhibits a
standard Gaussian random walk, we estimate that
ðD�Þ2 / �4d and that the time delay scales as �d / �4d2,

where d is proportional to the number of steps in this ran-
domwalk.

The distance to the pulsar is approximately proportional
to the observable dispersion measure, DM, and therefore
this relation can be checked experimentally. As has been
consistently noted for more than 30 years, observed scaling
of scintillations of distant pulsars, DM > 20 pc cm�3, is far
from this simple theoretical prediction; instead, it is well
described by �d / �4DM4 (see, e.g., Sutton 1971; Rickett
1977). Sutton proposed that this scaling for longer lines of
sight arose from the gradually increasing probability of
intersection with more strongly scattering H ii regions. In
this sense, he proposed that rare, large events dominated the
line-of-sight averages, via nonstationarity in the statistics of
electron density.

The problem of scintillations has been addressed by many
authors who developed thorough analytical models (see the
discussion in Tatarskii & Zavorotnyi 1980; Rumsey 1975;
Gochelashvily & Shishov 1975; Lee & Jokipii 1975a, 1975b,
1975c; Goodman & Narayan 1985; Blanford & Narayan
1985; Lithwick & Goldreich 2001). These theories all
assume that the density difference between two points is
drawn from a Gaussian distribution, with the variance of
the distribution being a function of the separation of the
points. They characterize the variation of density with
position by the projected correlator of density fluctuations.
This statistic gives the second moment of the difference in
projected densities.

Let the electron density be denoted asN(r) and its projec-
tion perpendicular to the distance d as ~NNðxÞ ¼

R d
0 dzNðrÞ.

Here x is a two-dimensional vector in the plane perpendicu-
lar to the line of sight, and z is a coordinate along the line of
sight, i.e., r ¼ ðx; zÞ. Note that these theories all assume that
the distribution of projected density fluctuations is Gaus-
sian and that it is completely described by its second
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moment, the projected density correlator. The density and
projected density correlators are related as

~NNðx1Þ ~NNðx2Þ
� �

¼
Z d

0

Z d

0

dz1 dz2 Nðr1ÞNðr2Þh i ; ð1Þ

where both fields inside the brackets are taken at the same
time. Because of space homogeneity, these correlators
depend only on the difference of the coordinates, e.g.,
hNðr1ÞNðr2Þi ¼ �ðr1 � r2Þ. The special case in which
�ðr1 � r2Þ is Gaussian is sometimes called a ‘‘Gaussian
spectrum of density fluctuations ’’; this special case is quite
distinct from the standard assumption that the distribution
of density differences between two given points is Gaussian.
In this paper we relax this standard assumption and
investigate power-law–like distributions of density-
difference fluctuations at two given points.

Assuming that the density fluctuations have finite cor-
relation length l, i.e., that the � function decays fast for
jr1 � r2j > l, we obtain

~NNðx1Þ ~NNðx2Þ
� �

¼ d

Z 1

0

dz �ðx1 � x2; zÞ � d ~��ðx1 � x2Þ ;

ð2Þ

where z ¼ z1 � z2, and we assume d4l. It is easy to show
that if in the inertial range of turbulent fluctuations, jrj5 l,
the � function behaves as �ðrÞ � N2

0 1� Bðr=lÞ� þ . . .ð Þ,
then the projected function is expanded as
~��ðx; tÞ � ~NN2

0

�
1� ~BBðx=lÞ1þ� þ . . .

�
. As an estimate, one has

N2h i ¼ N2
0 � ~NN2

0=l, and B and ~BB are of the order 1. The ana-
lytical (smooth) case corresponds to � ¼ 1, and in this case
�d / �4d2. In general, the density field need not be analytic,
and � 6¼ 1. This may happen when the density fluctuations
arise as a result of a turbulent cascade. For example,
Kolmogorov turbulence would imply � ¼ 2

3. Rigorous con-
sideration shows that in the nonanalytic case, the scaling of
the broadening time changes. Various possibilities have
been exhaustively analyzed in the literature (see, e.g., Lee &
Jokipii 1975a, 1975b; Goodman & Narayan 1985; Lambert
&Rickett 2000). For � � 1, one obtains

�d / �2ð�þ3Þ=ð�þ1Þdð�þ3Þ=ð�þ1Þ ; ð3Þ

while for a more exotic case, � > 1, one gets

�d / �8=ð3��Þdð3þ�Þ=ð3��Þ : ð4Þ

In x 2 we present a simple derivation of these results. Since
most observational data indicate that �-scaling is close to
�4, neither possibility provides enough freedom for
changing the d-scaling from d2 to d4.

In the present paper we propose a new model that fully
exploits the turbulent origin of the density fluctuations. We
assume that the statistics of the density fluctuations are not
Gaussian, but highly intermittent, and that the probability
density function (PDF) of density differences decays as a
power law, PðDNÞ / jDNj�1��. If this power-law distribu-
tion has a divergent second moment (� < 2), the Gaussian
random walk approach does not work. Instead, we suggest
the use of the theory of Lévy distributions (see Shlesinger,
Zaslavsky, & Frisch 1995). Physically, the possibility of
power-law density distribution seems rather natural for
strong turbulent fluctuations. Indeed, the ISM turbulence
can be near-sonic, i.e., velocity and density fields can

develop shock discontinuities. From the theory of shock
turbulence (Burgers turbulence) one knows that large nega-
tive velocity gradients or shocks have a power-law distribu-
tion (Polyakov 1995; E et al 1997; Boldyrev 1998). Jump
conditions on a shock then show that the velocity and den-
sity discontinuities are proportional to each other, and so
density jumps may also have a power-law distribution. We
note that this explanation is related to that proposed by
Sutton (1971) in that rare, large events play a dominant role
in scattering; however, we assume that the statistics are
stationary.

Taking the Lévy distribution of the density fluctuations
as a working conjecture, we demonstrate that the scaling of
the broadening time with respect to d is sensitive to the
exponent of the distribution, �, and the scaling �d / �4d 4 is
reproduced for � ¼ 2

3.
In the next section we review the ray-tracing model of

pulse propagation, considered previously by Williamson
(1972, 1973) and Blanford & Narayan (1985). In particular,
we rederive the results cited above for Gaussian density
fluctuations in a general, nonanalytic case. In x 3 we apply
the model to the non-Gaussian, Lévy-distributed density
fluctuations. We then numerically calculate the distribution
of pulse-arrival times in the case of a smooth density field
and demonstrate that ifPðDNÞ / jDNj�5=3, the width of this
distribution changes with the distance to the pulsar as �4d 4,
in agreement with our scaling arguments, and the tail of the
distribution has a power-law decay. Conclusions and future
research are outlined in x 4.

2. RAY-TRACING METHOD

Ray-tracing is applicable in the limit of geometric optics,
i.e., when the wave length is much smaller than the charac-
teristic size of density inhomogeneities (Lifshitz, Landau, &
Pitaevsky 1995). This rather effective method was applied to
the problem of scintillations by Williamson (1972, 1973)
and Blanford & Narayan (1985); we present it here in the
form that allows us to apply it in the next section to Lévy
walks. In the limit considered, signal propagation can be
characterized by rays, r(t), along which wave packets travel
similar to particles obeying the following system of Hamil-
ton equations:

_rr ¼ @!ðk; rÞ=@k ;

_kk ¼ � @!ðk; rÞ=@r : ð5Þ

In this representation, ! plays the role of the Hamiltonian,
!2 ¼ !2

peðrÞ þ k2c2, where !2
peðrÞ ¼ 4�NðrÞe2=me is the elec-

tron plasma frequency and k is a characteristic wavevector
of the packet. Differentiating the first expression in equation
(5) with respect to t and using the second expression in
equation (5) one obtains

€rr ¼ �2�c2�2r0@NðrÞ=@r ; ð6Þ

where r0 ¼ e2=mec2 is the classical radius of electron. Taking
into account that the ray propagates at small angles to the
line of sight, chosen as the z-axis, we are interested in the ray
displacement in the perpendicular, x direction, and instead
of time t we use the variable z ¼ ct. (We assume that
!4!pe, a condition well satisfied for interstellar propaga-
tion). The ray trajectory can now be viewed as the function
x(z). Consider now two rays, separated by a vector
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Dx ¼ x1 � x2 in the direction perpendicular to the z-axis. As
follows from equation (6), this vector obeys the equation

dðDxÞ
dz

¼ D� ;

dðD�Þ
dz

¼A
@Nðx1; zÞ

@x1
� @Nðx2; zÞ

@x2

� �
� AD

@N

@x
ðzÞ ; ð7Þ

where A ¼ �2��2r0, and Dh(z) is, generally, of the order of
the angle between the directions of the rays.

Let us now assume that the electron-density difference is a
Gaussian random function with correlation length l. Then
Dh(z) is a Gaussian random walk, whose elementary step
has the duration l in z direction. Since we are interested in
very large propagation distances, z4l, and the scattering
angles are very small, one can effectively assume that the
random density is short-range correlated, i.e., the character-
istic ‘‘ z-scale ’’ of change of vectors Dh and Dx is much
larger than l (Markov approximation). In principle, our
technique describes propagation from a point source to a
point observer through a statistically homogeneous
medium, although it can easily be generalized. We extract
only scaling laws below, so our results are not sensitive to
this assumption.

Formally, the assumption of short-range correlation of
density field means that �ðr1 � r2Þ ¼ 2~��ðx1 � x2Þ�ðz1 � z2Þ.
Equation (7) is thus completely analogous to the Langevin
equation for a particle having coordinate Dx and velocity
Dh. The diffusion coefficient for the particle motion is given
by a standard formula,

D ¼ A2

Z 1

0

D
@N

@x
ðz1ÞD

@N

@x
ðz2Þ

� �
dðz1 � z2Þ

� �4r20N
2
0

Dx

l

	 
��1 1

l
; ð8Þ

where the diffusion is described by ðD�Þ2 � Dz. We observe
however that the diffusion coefficient depends on the dis-
tance Dx, and its behavior differs qualitatively for � < 1 and
� > 1. In the first case, � < 1, diffusion is larger for smaller
distances, and therefore two rays effectively attract each
other in the course of propagation. This means that our geo-
metric ray picture breaks down, and one needs to consider
the effects of interference (interaction) of different rays. This
happens when the beam is compressed to the size limited by
the uncertainty condition in the perpendicular direction ,
kD�Dx � 1. Upon substituting D� � D1=2z1=2 and using the
expression for the diffusion coefficient (eq. [8]), we obtain
the minimal size of contraction and, equivalently, the dif-
fraction angle corresponding to an aperture of this size.
Assuming that the contraction happens at about half the
distance between the pulsar and the Earth, z � d=2, we find

ðD�Þ2 �
�
N4

0 r
4
0l

�2��2ð�þ3Þd2
�1=ð�þ1Þ

; � < 1 : ð9Þ

Recalling now that �d � ðD�Þ2d=c, we recover the result
given by equation (3). A rigorous wave analysis gives essen-
tially the same result as our ‘‘ semiclassical ’’ approach. In
the second case, � > 1, the rays effectively repel, so geo-
metric optics do not break down. In this case
Dx � D�z � D1=2z3=2. This equation gives

ðD�Þ2 � N4
0 r

4
0l

�2��8d2�
� �1=ð3��Þ

; 1 � � < 3 ; ð10Þ

which agrees with the result of equation (4). Both expres-
sions give the same result for the analytic case, � ¼ 1. The
above standard results have been obtained by many authors
and by a variety of different methods (see, e.g., Williamson
1972; Lee & Jokipii 1975a, 1975b; Goodman & Narayan
1985; Blanford & Narayan 1985). As we mentioned in the
introduction, neither of the expressions (eqs. [9] or [10])
allows us to recover the observed scaling �d / �4d4. In the
next section we address the problem, assuming that the den-
sity-difference distribution has a slowly decaying power-law
tail, such that the second moment of the distribution does
not exist. In this case the diffusion approximation does not
hold, and one needs to work directly with equation (7) to
establish the scaling of the probability of pulse arrival times.

3. LÉVY MODEL FOR SCINTILLATIONS

In previous sections we implicitly used the central limit
theorem, which states that the sum of many independent
random variables (in our case, angle deflections) has a
Gaussian distribution, if second moments of these variables
exist. More precisely, a convolution of many distribution
functions that have second moments, converges to an
appropriately scaled Gaussian distribution. Therefore, the
convolution of two Gaussian functions is again a rescaled
Gaussian function. One can generalize this question for dis-
tribution functions without finite second moments: if their
convolution converges, what is the limit? The answer is the
so-called Lévy distribution (Shlesinger et al 1995). As is the
Gaussian distribution, the Lévy distribution is stable: con-
volution of this distribution with itself gives the same distri-
bution after proper rescaling. In other words, if two
independent random variables are drawn from a Lévy dis-
tribution, their sum has the same distribution, appropriately
rescaled. Analogously to a Gaussian random walk, a sum of
independent, Lévy-distributed random variables is called a
Lévy walk or Lévy flight. The latter name reflects the highly
intermittent behavior of a typical Lévy trajectory: it has sud-
den large jumps or ‘‘ flights;’’ see Figures 1 and 2. Lévy
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Fig. 1.—Typical realization of a Lévy random flight with � ¼ 2
3; the devi-

ation angle is plotted vs. the number of scattering events (the angular scale
is arbitrary). The trajectory exhibits sudden large deviations. In the case of
ray propagation through the ISM, the ray angle performs a Lévy flight.
Large angular deviations occur when the ray encounters regions of large
electron density inhomogeneities, such as shocks or H ii regions.
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flights are common in completely different random systems
and often replace diffusion in turbulent systems. For exam-
ple, a particle exhibiting a Brownian random motion in an
equilibrium fluid, exhibits a Lévy walk in a turbulent fluid.
For a variety of further illustrations see Shlesinger et al.
(1995).

If a random variable y has a symmetric Lévy probability
density, P(y), then the Fourier transform of this distribution
(the characteristic function) has the form

�ðlÞ ¼
Z 1

�1
dyPðyÞ expðilyÞ ¼ expð�Cjlj�Þ ; ð11Þ

where 0 < � < 2 and C is some positive constant. Equation
(11) can be taken as the definition of a symmetric Lévy walk.
In the special case � ¼ 2 we recover a Gaussian distribution.
For 0 < � < 2 one can verify that PðyÞ / jyj�1�� as
jyj ! 1, and the second moment of this distribution
diverges. Of course, a distribution of a physical quantity
usually has a second moment. This does not contradict our
case, since the far tails of the PDF, which are not described
by the Lévy equation (11), make the dominant contribution
to the second moment. However, if we are interested in
effects caused by small fluctuations, y5 yrms, it is the central
part of the PDF that is important.

The characteristic function of a convolution of n Lévy
distributions is just a product of n characteristic functions
(eq. [11]). We therefore conclude that the sum of n Lévy dis-
tributed random variables has the distribution

PnðyÞ ¼ Pðyn�1=�Þn�1=� : ð12Þ

This is the demonstration of the convolution stability of the
Lévy distribution. Formula (12) teaches us that the displace-
ment y of the Lévy random walk scales with the number of
steps as y � n1=�. In the Gaussian case, � ¼ 2, we recover
the well known diffusion result.

We now apply this result to our scintillation problem. Let
us assume that the dimensionless density difference
DNðxÞ=N0 has a Lévy distribution with parameter �. We
then obtain from equation (7), D� � �ADN, and (compare

this result to eq. [8])

ðD�Þ2 � �4r20N
2
0

Dx

l

	 
��1	
z

l


2=�

: ð13Þ

In this formula, � describes the scaling of the density fluctu-
ations with separation, while � is the exponent of the power-
law decay of the probability distribution function for den-
sity-difference fluctuations at a given separation. Note that
the scaling in equation (13) is understood, not in the sense of
averaging, but in the sense of scaling of the central part of
the distribution, PzðD�Þ. For example, the scaling with dis-
tance z is understood as Pzn D�n1=�ð Þn1=� ¼ Pz D�ð Þ, for any n
(see eq. [12]). This scaling behavior holds for the bulk of
scattering angles, as shown by the typical widths of pulses in
Figure 3. The extreme tails of the distribution function of
Dh, which are not described by equation (11), dominate the
moments h(Dh)mi for m > �. In the Lévy model (eq. [11]),
these moments do not exist. In practice, at extremely large
Dh, we expect the scattering law to depart from the predic-
tions of this model. Indeed, the moments may show charac-
teristic scaling behavior, quite possibly different from that
described in equation (13). We expect that the effects from
this scaling might be important for extremely large time
delays � . We therefore wish to caution the reader that the
scaling exponent � that we use in this section can be different
from the second-moment exponent �, introduced after
equation (2).

We now proceed exactly as we did in the derivation of
equations (9) and (10), and obtain for � < 1,

ðD�Þ2 �
�
N4

0 r
4
0l

2�2��4=��2ð�þ3Þd4=�
�1=ð�þ1Þ

; ð14Þ

and for 1 � � < 3,

ðD�Þ2 �
�
N4

0 r
4
0l

2�2��4=��8d2��2þ4=�
�1=ð3��Þ

: ð15Þ

In the smooth (analytic) case, � ¼ 1, the scaling of the time
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Fig. 3.—Numerical calculation of the number of arriving rays vs. time
(time units are arbitrary).We used eq. (17) and the Lévy-distributed density
fluctuations with � ¼ 2

3. We calculated arrival times of 106 rays for three dif-
ferent distances to the source, n1 ¼ 100, n2 ¼ 84 � 100� 2�1=4, and
n3 ¼ 119 � 100� 21=4. The width of the plot n ¼ 84 is twice as small, and
the width of the plot n ¼ 119 is twice as large, as the width of the plot
n ¼ 100. This corresponds to the scaling �d / d4.
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broadening is

�d � ðN2
0 r

2
0l

�2=�=cÞ�4dð2þ�Þ=� : ð16Þ

We see that this scaling is sensitive to the exponent of the
power distribution of the density fluctuations, and
�d / �4d4 is achieved for � ¼ 2

3. This result was obtained by
rather general arguments and describes the scaling of the
arrival time distribution, rather than the moments of this
distribution. Observations measure precisely the time width
of the arriving signal, not its moments; i.e., they infer exactly
the quantity corresponding to scaling equation (16).

In the rest of this section we would like to verify the scal-
ing equation (16) by numerical simulation of equation (7),
and to get some idea about the time shape of the arriving
signal. Let us assume that the distance to the pulsar, d, is
much larger than the scale of an elementary scatter, l, i.e.,
n ¼ d=l41, where n is the number of scattering events. We
also assume that � ¼ 1. At each scattering event, the angle
of the ray changes by ��5 1, where �� is a Lévy-distributed
random variable. (We designate �N and �� the characteristic
changes of the density field and of the angle deviation of a
ray, introduced by one scattering segment of length l along
the line of sight. This should not be confused with the
changes of these variables between two different rays in a
perpendicular plane x, denoted by D.) The time delay
(compared to the straight propagation) introduced by each
scattering segment is ��d ¼ l�2=ð2cÞ. We want to find the
probability distribution of the total travel time delay,

�d ¼ l

2c

Xn
m¼1

�2m ¼ l

2c

Xn
m¼1

Xm
s¼1

��s

 !2

; ð17Þ

assuming that each �hs (where ��s � �A�N as a conse-
quence of eq. [7]) is distributed identically, independently,
and according to the Lévy law (eq. [11]) with � ¼ 2

3.
In Figure 3 we plot the number of arriving rays as a

function of time. We considered the number of scattering
events (the distance to the pulsar) to be n1 ¼ 100,
n2 ¼ 119 � 100� 21=4, and n3 ¼ 84 � 100� 2�1=4. From
Figure 3 one can see that the widths of the curves (estimated
at half of their maximum values) indeed differ by a factor of
2, as the scaling �d / �4d4 would predict for these distances.
The curves obtained closely resemble the real-time shapes of
arriving signals, although they cannot be trusted for small
propagation angles (small times) since the model does not
capture effects of interference. The tails of the signals are
however reliably predicted to have an asymptotic power-
law form. This asymptotic behavior can be found from the
following qualitative argument (which would be exact for a
thin screen model and for � ¼ 1). The delay time is propor-
tional to the square of the typical deviation angle of the
trajectory, � / �2, where h has a Lévy distribution Pð�Þwith
� ¼ 2

3. Therefore, the distribution of arrival times can be

found as Ið�Þ / Pð�1=2Þ��1=2, having the asymptotic form
Ið�Þ / ��4=3 as � ! 1. In contrast, the traditional thin-
screenmodel with aKolmogorov spectrum yields an asymp-
totic form Ið�Þ / ��11=6 (Isaacman & Rankin 1977). The
curves presented in Figure 3 have an asymptotic form close
to Ið�Þ / ��1:2, which is not far from our qualitative
estimate.

4. CONCLUSIONS

We suggest a novel explanation for the observed scaling
of time broadening of pulsar signals for large distances
(large dispersion measures, DM > 20 pc cm�3), �d / �4d4.
The central concept is that the density fluctuations in the
interstellar medium have a Lévy probability distribution
function that has power-law decay and has no second
moment. The angle of pulse propagation, deviated by these
density fluctuations, exhibits not a conventional Brownian
motion, but rather a Lévy flight. The exponent � is the
parameter of the probability distribution of density differen-
ces, and the pulse broadening time is rather sensitive to it, as
is described by our main equations (14) and (15). The
observed scaling �d / �4d4 is recovered for � ¼ 2

3, i.e., for
the jDNj�5=3 decay of the distribution function of density
differences.

Further investigation is needed to explain the proposed
�5/3 exponent. We believe that observations have poten-
tially great impact on theory in this case, because they can
discriminate among different possible distribution functions
for the density-difference fluctuations (measured at a fixed-
point separation), as well as measuring the spatial spectrum
of density fluctuations. This PDF appears as a result of tur-
bulent density fragmentation, and it would be highly desir-
able to search for such fragmentation in numerical
simulations or to develop an analytical explanation for it.
Calculations of propagation including wave phenomena,
such as diffraction and interference, may provide predic-
tions for the precise shapes of scattered pulses, particularly
at large delays, and averaged over long observing intervals,
as a function of �. Comparison of temporal or angular
broadening observations with these predictions may help
understand interstellar turbulence. These represent con-
crete predictions of our model for the turbulence in the
ISM, which can in principle be checked numerically or
observationally.

We are grateful to Åke Nordlund for valuable comments.
We would also like to thank Peter Goldreich and Yoram
Lithwick for important conversations and the anonymous
referee for useful suggestions and discussions that helped to
improve the text. The work of S. B. was supported by grant
NSF PHY 99-07949, that of C. G. was supported by NSF
AST 97-31584.

REFERENCES

Blanford, R., &Narayan, R. 1985,MNRAS, 213, 591
Boldyrev, S. 1998, Phys. Plasmas, 5, 1681
E,W., Khanin, K., Mazel, A., & Sinai, Ya. 1997, Phys. Rev. Lett., 78, 1904
Gochelashvily, K. S., & Shishov, V. I. 1975, Opt. Quant. Electron., 7, 524
Goodman, J., &Narayan, R. 1985,MNRAS, 214, 519
Gwinn, C. R., Bartel, N., & Cordes, J.M. 1993, ApJ, 410, 673
Isaacman, R., &Rankin, J.M. 1977, ApJ, 214, 214
Lambert, H. C., &Rickett, B. J. 2000, ApJ, 531, 883

Lee, L. C., & Jokipii, J. R. 1975a, ApJ, 196, 695
———. 1975b, ApJ, 201, 532
———. 1975c, ApJ, 202, 439
Lifshitz, E. M., Landau, L. D., & Pitaevsky L. P. 1995, Electrodynamics of
ContinuousMedia, Vol. VIII (Oxford: Butterworth-Heinemann)

Lithwick, Y., &Goldreich, P. 2001, ApJ, 562, 279
Polyakov, A.M. 1995, Phys. Rev. E, 52, 6183
Rickett, B. J. 1977, A&ARev., 15, 479

No. 2, 2003 SCINTILLATIONS AND LÉVY FLIGHTS THROUGH THE ISM 795
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