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Molecules, magnetic fields and 

Intermittency in coSmic
Turbulence

Following the energy trail...

(a beach in the Maldives)
Bioluminescence in waves: plancton highlights
Strong shear change



  

MISTy questions

 Origin of molecules in dilute and violent media ?
 CO observed in diffuse irradiated media
 Warm H2
 extragalactic and galactic CH+

 Origin of the clumpy structure of the cold ISM ?
 Origin and Structure of the B field, its link with 

matter ?
 ↔ MHD turbulence dissipation (energy is 

dissipated in localised structures which affect the 
chemistry and magnetic fields)



The blink of the cosmic eyelash

Swinbank+2010
Redshift z=2.33 Falgarone+2017

A galaxy seen through a gravitational lense



  

Observational Context

 Broad lines of CH+ in emission and absorption in 
high-z galaxies (Falgarone+17 Nature, 548, 430) 

 Molecular emission in colliding galaxies (Stefan's 
Quintet)

 Molecular emission hints at very dense and cool, 
probably clumpy media 

 Broad lines: equipartition between large scale

thermal energy  (107 K) and kinetic energy of dense 
cool gas.



Falgarone+2017

The blink of the cosmic eyelash



  

Interpretation in MIST
The energy trail(s)

 Large scale energy is transferred to smaller scales by 
turbulent cascade (stretching and compression) and 
by cooling cascade (condensation)

 The cooling cascade proceeds with a phase separation. 
How is kinetic energy shared between phases ? 

 Energy is radiated in bursty dissipative structures 
 Molecules are produced and excited by these 

dissipative structures (e.g. vortex, shocks)



  

The phases of the ISM



  

Typical values
 Huge dynamical range of length scales, 
 but not so big for velocity
 Reynolds number: UxL / dissipation coefficient

1/10x

1/10x



  

Dissipation in decaying turbulence
 (incompressible runs) 

(Momferratos PhD thesis: 5123 spec. elts 
 Incompressible simulations by ANK, pseudo-spectral code with AD)

~1 pc

n
H
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m
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Line of sight integrated dissipation:



  

Giorgos' PhD:
Decaying Incompressible MHD + AD
 Dissipation localised on sheets, structure extraction
 Measured statistics of dissipative structures (PDFs 

and correlation between characteristic prop.ties)
 Each sheet is 'pure' in its dissipation nature: viscous, 

ohmic or ambipolar heating
 Correlations between dissipation proj. and increments
 Initial conditions matter a lot
 B field orientation is not random w.r.t. to dissipation 

in slices
 A.D. Forces jxb=0 from small scales towards large



  

Observable increments vs. dissipation

• Background:
Dissipation rates
Ohmic  Ohmic  ViscousViscous    ADAD

• Contours: 
Increments of 
integrated observables:
-  LOS velocity  (white)LOS velocity  (white)
-   Stokes Q (green)Stokes Q (green)
-   Stokes U (red)Stokes U (red)
-   POS polarisation POS polarisation 

angle (blue)angle (blue)  

NOTE: increment of polarisation angle (blue contours) 
are less correlated to dissipation. Better use Q,U.

Lbox / 2 



  

Dissipative structures
(locii of intense dissipation, > µ+2σ)



  

Structure statistics (one example)



  

Initial conditions matter



  

Slice of B(p.o.s.) and |curl(u)|
relative orientation not random



  

JxB ~ 0 with ambipolar diffusion

Ques: does this mean that at small scales, Hydrodynamic turbulence prevails ?
And Bfield is force-free (jxb=0), independent ?
 Maybe not: induction equation must be compatible with force-free.



  

Simulations of decaying turbulence. 
Compressible: Isothermal 3D MHD (Mach 4, ABC)

(Momferratos PhD thesis: 
DUMSES simulations with careful treatment of viscous and resistive dissipation)

~1 pc

n
H
 ~ 100/cm3

<u2>~<b2/ρ>

Re=LU/ν ~ 2.107   103

Re
m
=LU/η ∼ 2.1017 103

(10203 pixels) 

Red: Ohmic heatingRed: Ohmic heating
Blue: 4/3 Blue: 4/3 νν  div(u) div(u)2     2     Green: Green: νν  curl(u) curl(u)22



  

Thibaud's Internship (& PhD)
Decay Compressible MHD (no AD)

 Nature of dissipation is mixed
 [grid => need to recover dissipation from grid]
 B field // dissipative structures in 3D 

(but not in projection)
 Dissipation is dominated by low convergence 



  

Grid Dissipation

Red: Ohmic heatingRed: Ohmic heating
Blue: 4/3 Blue: 4/3 νν  div(u) div(u)2     2     Green: Green: νν  curl(u) curl(u)22

Need to estimate numerical dissipation 
to recover the properties of the total dissipation  



  

Now ohmic and viscous dissipation 
are  mixed

Mach 0 Mach 1

Now ohmic and viscous dissipation 
are  mixed



  

Now ohmic and viscous dissipation 
are  mixed

Mach 0 Mach 4



  

Viscous and Ohmic dissipation

Thibaud Richard



  

Dissipative structures extraction
Find connected sets where dissipation > mean + 2.std

Thibaud Richard



  

B field is mostly parallel to structures

Cos( B, normal to dissipative surface)

B parallel B normal

Thibaud Richard



  

Projection over simulations

Mach 4, ABC

Rotation measure overlayed with p.o.s. B field direction 



  

Projection over simulations

Mach 4, ABC

Rotation measure overlayed with p.o.s. B field direction 



  

Orientation statistics



  

Projection over simulations

Mach 4, ABC

Rotation measure overlayed with p.o.s. B field direction 



  

Dissipation is mostly incompressible
Volume fraction  occupied by bins of (dissipation.convergence)



  

Dissipation is mostly incompressible

Convergence (unitless)

Fraction
Of the total 
Dissipation



  

Pierre (+Thibaud, Andrew, Ben)

 Look at MHD variables: w=(rho, u, b ) and search 
for direction of max gradient of w.

 Large gradients have a well determined orientation 
(meaning: plane-parallel is OK)

 Decompose gradients in fast/intermerdiate/slow 
waves

 Result: OK for single planar shocks, messy in 
compressible turbulence...

TODO: get shocks and parameters, measure stats, 
shock collisions ? 



  

Total Dissipation vs Gradient



  

Isotropy (a2/a3) vs Gradient



  

Test Slow & Fast shock
Gas flows from right onto a wall on the left. 2 snapshots shown.

t=1

t=2

Direction of the inflow

Here be a wall...



  

Isothermal MHD equations



  

Gradient Decomposition



  

Gradient Decomposition 
in MHD compressible turbulence

Fast, Intermediate, Slow



Rankine Hugoniot

 Flux conservation through a steady planar shock

Control volume

Working surface (u=0 in this frame, 
one way or another, dissipation proceeds inside)

Pre-shock Post-shock 



Rankine Hugoniot

 Conservation of mass, 
momentum and magnetic 
flux in the steady shock 
frame induces 
relationships between pre-
shock and post-shock 
physical conditions.

 Examples:

* Compression = Mach2 in an isothermal shock
* Max temperature ~ u2  expressses conversion of 
kinetic to thermal energy in a viscous front

For the molecular weight of the ISM:



  

Questions, ToDo
 What can we do to link to observations ?
 Single planar shock ? Single curved shock (Tram)?
 Link to Faraday rotation ?
 Collection of shocks ↔ Chemistry ?
 Focus of one structure in 3D MHD: how to 

reconstruct emissivity ?
 Test SHOCK_FIND. Improve on it ?
 Statistic theory of shocks ?
 Contact Discontinuity detection ↔ condensation 

fronts in thermal instability simulations



  

TODO

 Color 2d histo with div (u) / curl(u).
 Back to obs values for div(u), eps.
 Oblique shocks in Paris-Durham
 Statistics of slow / fast , convolve with Paris-

Durham code => JWST predictions.
 Erwan: beware of scales of gradient: choose 

relevant ones for energy ?
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