Dissipation in the turbulent ISM

Edith Falgarone
François Boulanger, Benjamin Godard, Pierre HilyBlant, François Levrier, Pierre Lesaffre, Guillaume Pineau des Forêts,
Andrew Lehmann, Alba Vidal García, Thibaud Richard

Totoro

Molecules, magnetic fields and Intermittency in coSmic Turbulence

Following the energy trail...

Bioluminescence in waves: plancton highlights Strong shear change

MISTy questions

- Origin of molecules in dilute and violent media ?
- CO observed in diffuse irradiated media
- Warm H2
- extragalactic and galactic CH+
- Origin of the clumpy structure of the cold ISM ?
- Origin and Structure of the B field, its link with matter?
- \leftrightarrow MHD turbulence dissipation (energy is dissipated in localised structures which affect the chemistry and magnetic fields)

The blink of the cosmic eyelash

A galaxy seen through a gravitational lense

Swinbank+2010
Redshift $\mathrm{z}=2.33$

Cosmic Eyelash

Observational Context

- Broad lines of CH+ in emission and absorption in high-z galaxies (Falgarone+17 Nature, 548, 430)
- Molecular emission in colliding galaxies (Stefan's Quintet)
- Molecular emission hints at very dense and cool, probably clumpy media
- Broad lines: equipartition between large scale thermal energy $\left(10^{7} \mathrm{~K}\right)$ and kinetic energy of dense cool gas.

The blink of the cosmic eyelash

Falgarone+2017

Interpretation in MIST The energy trail(s)

- Large scale energy is transferred to smaller scales by turbulent cascade (stretching and compression) and by cooling cascade (condensation)
- The cooling cascade proceeds with a phase separation. How is kinetic energy shared between phases ?
- Energy is radiated in bursty dissipative structures
- Molecules are produced and excited by these dissipative structures (e.g. vortex, shocks)

The phases of the ISM

Typical values

- Huge dynamical range of length scales,
- but not so big for velocity
- Reynolds number: UxL / dissipation coefficient

	HIM	WNM	CNM	Diffuse	Dense	Discs	Sun
Density $\rho\left[\mathrm{cm}^{-3}\right]$	0.004	0.6	30	200	10^{4}	10^{10}	$1 \mathrm{g.cm}^{-3}$
Temperature $T[\mathrm{~K}]$	3.10^{5}	5000	100	50	10	300	10^{6}
Length scale $L[\mathrm{pc}]$	100	50	10	3	0.1	200 AU	$5.10^{-3} \mathrm{AU}$
Velocity $U\left[\mathrm{~km} \cdot \mathrm{~s}^{-1}\right]$	10	10	10	3	0.1	0.1	1
\mathcal{M}	0.2	2	13	7	0.5	0.1	0.02
$\mathcal{M}_{\mathcal{G}}$	130	20	15	6	0.8	0.08	0.003
\mathcal{R}	10^{2}	10^{5}	10^{7}	10^{7}	10^{6}	10^{9}	10^{17}
\mathcal{R}_{m}	10^{21}	10^{20}	10^{18}	10^{17}	10^{15}	10^{9}	10^{10}
$\mathcal{R}_{A D}$	10^{3}	10^{3}	10^{2}	10^{3}	10^{4}	10^{5}	10^{20}
Ionisation fraction	1	10^{-2}	10^{-4}	10^{-4}	10^{-4}	10^{-7}	1
Masser^{-7} per ion $[\mathrm{amu}]$	1	1	12	12	12	24	1
$N_{e} B_{z}\left[10^{19} \mathrm{~cm}^{-2} 3 \mu \mathrm{G}\right]$	0.12	0.09	0.009	0.01	0.02	0.2	3×10^{15}
$\mathbf{1 / 1 0 x} N_{e}\left[10^{19} \mathrm{~cm}^{-2}\right]$	0.05	0.5	0.3	0.3	0.1	10^{3}	10^{27}

Dissipation in decaying turbulence (incompressible runs)

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{H}} \sim 100 / \mathrm{cm}^{3} \\
& \left\langle\mathrm{u}^{2}>\sim<\mathrm{b}^{2} / \rho>\right. \\
& \mathrm{Re}=\mathrm{LU} / \mathrm{V} \sim 2.10^{7} 10^{3} \\
& \operatorname{Re}_{\mathrm{m}}=\mathrm{LU} / \eta \sim 2.10^{17} 10^{3} \\
& \operatorname{Re}_{\mathrm{AD}}=\mathrm{L} / \mathrm{U} / \mathrm{t}_{\mathrm{AD}} \sim 10^{2}
\end{aligned}
$$

Giorgos' PhD:

Decaying Incompressible MHD + AD

- Dissipation localised on sheets, structure extraction
- Measured statistics of dissipative structures (PDFs and correlation between characteristic prop. ${ }^{\text {ties }}$)
- Each sheet is 'pure' in its dissipation nature: viscous, ohmic or ambipolar heating
- Correlations between dissipation proj. and increments
- Initial conditions matter a lot
- B field orientation is not random w.r.t. to dissipation in slices
- A.D. Forces jxb=0 from small scalestowards laìge

Observable increments vs．dissipation

Lbox／ 2

－Background：
 Dissipation rates

Oisssis Viscous AD
－Contours：
Increments of integrated observables：
－LOS velocity（white）
－Stokes Q（green）
－S゙ゃが心es リ（recl）
－POS polarisation angle（blue）

NOTE：increment of polarisation angle（blue contours） are less correlated to dissipation．Better use Q，U．

Dissipative structures

 (locii of intense dissipation, $>\mu+2 \sigma$)

Structure statistics (one example)

Initial conditions matter

Slice of B(p.o.s.) and |curl(u)| relative orientation not random

JxB ~ 0 with ambipolar diffusion

Figure 4.6: Power spectra of $\mathbf{j} \times \mathbf{b}$ for high resolution runs 10,12 and 14 . The field becomes force-free at small scales when the strength of the AD is increased.

Ques: does this mean that at small scales, Hydrodynamic turbulence prevails ? And Bfield is force-free ($\mathrm{jxb}=0$), independent?
Maybe not: induction equation must be compatible with force free

Simulations of decaying turbulence. Compressible: Isothermal 3D MHD (Mach 4, ABC)
 ~1 pc

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{H}} \sim 100 / \mathrm{cm}^{3} \\
& <\mathrm{u}^{2}>\sim<\mathrm{b}^{2} / \mathrm{\rho}> \\
& \operatorname{Re}=\mathrm{LU} / \mathrm{V} \sim 2.10^{7} 10^{3} \\
& \operatorname{Re}_{\mathrm{m}}=\mathrm{LU} / \eta \sim 2.10^{17} 10^{3}
\end{aligned}
$$

(1020^{3} pixels)
(Momferratos PhD thesis: DUMSES simulations with careful treatment of viscous and resistive dissipationa)

Thibaud's Internship (\& PhD) Decay Compressible MHD (no AD)

- Nature of dissipation is mixed
- [grid => need to recover dissipation from grid]
- B field // dissipative structures in 3D
(but not in projection)
- Dissipation is dominated by low convergence

Grid Dissipation

Physical dissipation ABC Mach 4

Blue: $4 / 3 v \operatorname{div}(u)^{2}$ Green: $v \operatorname{curl}(u)^{2}$

Need to estimate numerical dissipation to recover the properties of the total dissipation

Now olimic and viscous dissipation are mixed

Mach 0

Mach 1

Now
and viscous dissipation are mixed

Mach 0

Mach 4

Viscous and Ohmic dissipation

Dissipative structures extraction

Find connected sets where dissipation > mean +2. std

B field is mostly parallel to structures

Thibaud Richard

Projection over simulations

Rotation measure overlayed with p.o.s. B field direction

Projection over simulations

Rotation measure overlayed with p.o.s. B field direction

Orientation statistics

$\cos ($ angle) between $\operatorname{grad}(R m)$ and $B(Q, U)$

Projection over simulations

Rotation measure overlayed with p.o.s. B field direction

Dissipation is mostly incompressible

Volume fraction occupied by bins of (dissipation.convergence)

Dissipation is mostly incompressible

Fraction Of the total Dissipation

Convergence (unitless)

Pierre (+Thibaud, Andrew, Ben)

- Look at MHD variables: w=(rho, u, b) and search for direction of max gradient of \mathbf{w}.
- Large gradients have a well determined orientation (meaning: plane-parallel is OK)
- Decompose gradients in fast/intermerdiate/slow waves
- Result: OK for single planar shocks, messy in compressible turbulence...
TODO: get shocks and parameters, measurestats, shock collisions?

Total Dissipation vs Gradient

Isotropy (a2/a3) vs Gradient

Test Slow \& Fast shock

Gas flows from right onto a wall on the left. 2 snapshots shown.

Direction of the inflow

Isothermal MHD equations

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{u})=0 \\
\partial_{t} \rho u_{i}+\partial_{j}\left(\rho u_{i} u_{j}+p \delta_{i j}\right)-\boldsymbol{j} \times \boldsymbol{b}_{i}+\partial_{j}\left(\rho \nu S_{i j}[u]\right)=0 \\
\partial_{t} \boldsymbol{b}-\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{b})+\boldsymbol{\nabla} \times(\eta \boldsymbol{j})=\mathbf{0} \\
\boldsymbol{j}=\boldsymbol{\nabla} \times \boldsymbol{b} \\
p=\rho c^{2} \\
S_{i j}[u]=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)-\frac{1}{3} \partial_{k} u_{k} \delta_{i j}
\end{gathered}
$$

Gradient Decomposition

R:fast G:intr B:slow

Gradient Decomposition in MHD compressible turbulence

R:fast G:intr B:slow

Fast, IIntermédiate, Slow

Rankine Hugoniot

- Flux conservation through a steady planar shock

Rankine Hugoniot

- Conservation of mass, momentum and magnetic flux in the steady shock frame induces relationships between preshock and post-shock physical conditions.
- Examples:

$$
\begin{aligned}
& {\left[B_{X}\right]_{\text {pre }}^{\text {post }}=0} \\
& {\left[\rho u_{x}\right]_{\text {pre }}^{\text {post }}=0} \\
& {\left[(B \times u)_{y}\right]_{\text {pre }}^{\text {post }}=0} \\
& {[(B \times u) z]_{\text {pre }}^{\text {post }}=0} \\
& {\left[\rho u_{x} u_{y}-B_{x} B_{y}\right]_{\text {pre }}^{\text {post }}=0} \\
& {\left[\mu_{u_{x}} u_{z}-B_{x} B_{z}\right]_{\text {pre }}^{\text {post }}=0} \\
& {\left[\rho u_{x}^{2}+P\right]_{\text {pre }}^{\text {post }}=0}
\end{aligned}
$$

* Compression = Mach ${ }^{2}$ in an isothermal shock * Max temperature $\sim u^{2}$ expressses conversion of kinetic to thermal energy in a viscous front

For the molecular weight of the ISM:

$$
T_{\max }=53 \mathrm{~K}\left(u / 1 \mathrm{~km} \mathrm{~s}^{-1}\right)^{2}
$$

Questions, ToDo

- What can we do to link to observations ?
- Single planar shock ? Single curved shock (Tram)?
- Link to Faraday rotation ?
- Collection of shocks \leftrightarrow Chemistry ?
- Focus of one structure in 3D MHD: how to reconstruct emissivity ?
- Test SHOCK_FIND. Improve on it?
- Statistic theory of shocks ?
- Contact Discontinuity detection \leftrightarrow condensation

TODO

- Color 2d histo with div (u) / curl(u).
- Back to obs values for div(u), eps.
- Oblique shocks in Paris-Durham
- Statistics of slow / fast , convolve with ParisDurham code => JWST predictions.
- Erwan: beware of scales of gradient: choose relevant ones for energy?

