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ABSTRACT

Context. An essential facet of turbulence is the space-time intermittency of the cascade of energy that leads to coherent structures of
high dissipation.
Aims. In this work, we attempt to investigate systematically the physical nature of the intense dissipation regions in decaying isother-
mal magnetohydrodynamical (MHD) turbulence.
Methods. We probe the turbulent dissipation with grid based simulations of compressible isothermal decaying MHD turbulence. We
take unprecedented care at resolving and controlling dissipation: we design methods to locally recover the dissipation due to the
numerical scheme. We locally investigate the geometry of the gradients of the fluid state variables. We develop a method to assess the
physical nature of the largest gradients in simulations and to estimate their travelling velocity. Finally we investigate their statistics.
Results. We find that intense dissipation regions mainly correspond to sheets: locally, density, velocity and magnetic fields vary
primarily across one direction. We identify these highly dissipative regions as fast/slow shocks or Alfvén discontinuities (Parker sheets
or rotational discontinuities). On these structures, we find the main deviation from 1D planar steady-state is mass loss in the plane
of the structure. We investigate the effect of initial conditions which yield different imprints at early time on the relative distributions
between these four categories. However, these differences fade out after about one turnover time, when they become dominated by
weakly compressible Alfvén discontinuities. We show that the magnetic Prandtl number has little influence on the statistics of these
discontinuities, but it controls the Ohmic vs viscous heating rates within them. Finally, we find the entrance characteristics of the
structures (such as entrance velocity and magnetic pressure) are strongly correlated.
Conclusions. These new methods allow to consider developed compressible turbulence as a statistical collection of intense dissipation
structures. This can be used to post-process 3D turbulence with detailed 1D models apt for comparison with observations. It could
also reveal useful as a framework to formulate new dynamical properties of turbulence.
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1. Introduction

Gravity drives the evolution of the universe, but the gas dissipa-
tive dynamics is a central, yet unsolved, issue in the theories of
galaxy and star formation (e.g. White & Rees 1978). An emer-
gent scenario is that a large fraction of the gas internal energy
is stored and eventually dissipated in turbulent motions of the
coldest phases instead of being radiated away, and therefore lost,
by the warmest phases (e.g. Guillard et al. 2012; Appleton et al.
2013; Falgarone et al. 2017). Turbulence however adds a colos-
sal level of complexity to the gas dynamics because cosmic tur-
bulence is supersonic, involves magnetic fields, exhibits plasma
facets, and pervades all the thermal phases. Moreover its dissipa-
tion is known to occur in bursts localized in time and space, i.e.
the space-time intermittency of turbulence (Landau & Lifshitz
1959; Kolmogorov 1962; Meneveau & Sreenivasan 1991).

A valuable and unexpected guidance in the investigation of
the intermittent dissipation of interstellar turbulence is provided
by a number of molecular observations, including the existence
in the cold neutral medium (CNM) of specific molecules that re-
quire large inputs of supra-thermal energy to form (Nehmé et al.
2008; Godard et al. 2012) and of molecules more excited than
what an equilibrium at the ambient temperature would predict
(Falgarone et al. 2005; Gry et al. 2002; Ingalls et al. 2011). The
mere existence of large amounts of CO molecules surviving in
irradiated diffuse media requires a formation route which is not

controlled only by photons and cosmic rays (Levrier et al. 2012).
This is in line with the large observed abundances of HCO+ in
diffuse gas (Lucas & Liszt 1996; Liszt & Lucas 1998) that is
now recognized observationally as a signature of supra-thermal
chemistry (Gerin & Liszt 2021).

Supra-thermal chemistry can be driven by several processes
that do not appeal to turbulent dissipation bursts, such as the ion-
neutral drift in Alfvén waves (Federman et al. 1996), conduction
at interfaces between the warm (WNM) and cold neutral medium
(Lesaffre et al. 2007), transport between the WNM and CNM
(Valdivia et al. 2017). These latter processes tap the reservoir of
thermal energy of the WNM and are able to drive a warm chem-
istry in the CNM but they fall short of reproducing the observed
abundances of molecules with highly endothermic formation.

The channels linked to dissipation bursts, such as the ion-
neutral drift in C-type shocks (Flower et al. 1985; Flower &
Pineau des Forets 1998; Draine & Katz 1986; Lesaffre et al.
2013) and in magnetised vortices (Godard et al. 2009, 2014),
dissipative heating in shear layers (Falgarone et al. 1995; Joulain
et al. 1998), shock heating and compression (Lesaffre et al.
2020) tap the mechanical energy reservoir of the CNM, which is
roughly of the same magnitude as the thermal energy reservoir
of the WNM. However, they are naturally more successful be-
cause they can be much more concentrated in space, thus leading
to potentially very strong effective temperature bursts. Out-of-
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equilibrium chemical and excitation signatures have been mod-
elled for all these channels, related to specific localised struc-
tures where turbulent dissipation is enhanced. This detailed mod-
elling is hard to reconcile with a coherent description of the en-
ergy cascade from the large scales of turbulence down to the
dissipation scales, including intermittency. It has been attempted
for the first time by chemical post-processing of state-of-the-art
numerical simulations of MHD turbulence, including ion-neutral
drift (Myers et al. 2015; Moseley et al. 2021). The smallest scales
reached in these simulations are however far above the dissipa-
tion scales but the results are promising. It is the subject of the
present paper to explore the nature, topology and statistics of the
dissipation structures that form in magnetised turbulence.

Turbulent dissipation has been extensively studied in incom-
pressible media. In hydrodynamical (HD) turbulence, Moisy &
Jiménez (2004) have examined the geometrical properties of
sites of extreme vorticity and shear. Uritsky et al. (2010) exam-
ined the statistical properties of sites of strong dissipation in in-
compressible magnetohydrodynamical (MHD) turbulence, and
Momferratos et al. (2014) extended their work to include am-
bipolar diffusion (i.e. ion-neutral drifts). Zhdankin et al. (2013,
2014, 2015, 2016) studied extensively the statistics and dynam-
ics of current sheets in reduced MHD. For example Zhdankin
et al. (2013) confirm the Sweet-Parker view of reconnection, al-
though they note that not all current sheets are involved in recon-
nection.

All the above studies are performed in an incompressible
framework while the interstellar medium is known to be ex-
tremely compressible. We want here to examine dissipation in
the extreme case of isothermal turbulence, where thermal effects
cannot help pressure to resist against compression. In the incom-
pressible framework (see Momferratos et al. 2014, for example),
the physical nature of a dissipation structure (current sheet or
shearing sheet) is directly linked to the nature of the dissipation
within this structure (it is either purely Ohmic for current sheets
or purely viscous for shearing sheets). The situation however is
much more complicated in compressible HD turbulence, where
shocks and shear can both lead to viscous dissipation, and even
worse in compressible MHD, where dissipation structures can
lead to viscous and resistive dissipation at the same place (as in
a fast shock, see Lehmann et al. (2016) or our appendix B).

Previous studies have attempted to characterise various indi-
vidual types of structures. Smith et al. (2000a) and Smith et al.
(2000b) investigate velocity jumps in the three main directions
as a proxy to shocks. Yang et al. (2015) were able to single out
and study the formation of one rotational discontinuity in a simu-
lation of MHD turbulence. Lehmann et al. (2016) introduced the
SHOCKFIND algorithm which investigates an MHD snapshot to
systematically extract every fast and slow shocks. In the present
study, we attempt to characterise the physical nature of all in-
tense dissipation structures: we present a new improved method
able to characterise fast and slow shocks as well as Alfvén dis-
continuities.

We want to examine the statistics of the various physical
structures and their parameters and possibly assess how much
dissipation is due to each category of dissipation structure.
To this effect, we examine grid based simulations of decaying
isothermal MHD turbulence which we present in sections 2.1
and 2.2. Because grid-based simulations are known to be more
dissipative than pseudo-spectral simulations (which are however
ill-suited to compressible fluids due to the Gibbs phenomenon),
we devise and test a new method to retrieve the local dissipa-
tion intrinsic to the scheme (see appendix B). Stone et al. (1998)
investigate dissipation in driven and decaying MHD turbulence

and conclude about half is due to shocks. More precisely, they
measure that 50% of the total dissipation is due to their artifi-
cial viscosity term. However, they do not account for implicit
numerical dissipation, and they did not check whether their ar-
tificial viscosity was indeed located in shocks. Similar studies
by Smith et al. (2000a) and Smith et al. (2000b) (see their table
1) also use artificial viscosity and suffer from the same uncer-
tainties. Porter et al. (2015) and Park & Ryu (2019) did a much
better job at detecting shocks and assigning dissipation to them
but their method still suffers from uncertainty when the shocks
are not aligned with the grid, and it is restricted to shocks (it
would not work for Alfvén discontinuities because they focus
on density jumps). In the present work, thanks to our method
to recover everywhere the local dissipation (including the losses
implicitly incurred by the numerical scheme), and because we
carefully analyse the nature of intense dissipation structures, we
hope to make more robust claims. For example, Lesaffre et al.
(2020) performed a 2D HD simulation to such small scales that
they were able to fully resolve the dissipation length scale, and
to characterise almost all dissipation structures.

High dissipation is necessarily associated with strong varia-
tions of some of the variables controlling the physical state of the
gas. We design a technique to assess locally the main direction of
the gradients of the physical state of the gas (section 2.3). We ob-
serve that the regions of highest dissipation have their gradients
locally along one direction primarily (in other words, intense dis-
sipation structures are sheet-like). We show how to decompose
the gradients along this direction using a basis of MHD waves
(section 2.4). In section 3 we examine the connected sets of pix-
els above a large threshold of dissipative heating and we locally
assess the nature of the physical profiles obtained scanning along
the main direction of the gradient. We test whether the physi-
cal nature of these profiles agrees with the celebrated Rankine-
Hugoniot (RH) relations (Macquorn Rankine 1870) and perform
various consistency checks which confirm the physical nature of
these scans. In section 4 we examine the statistical properties of
the scans we find. We discuss our results in section 5 and con-
clude in section 6.

2. Numerical method

2.1. Simulation

In the present study, we run a set of simulations of decaying
magnetohydrodynamics (MHD) turbulence.

2.1.1. Numerical method

We solve the evolution equations of resistive and viscous isother-
mal MHD which we write here in conservative form:

0 = ∂tρ + ∇ · (ρu) (1)
0 = ∂tρu + ∇ · (ρuu − νρS[u]) + ∇p − J × B (2)
0 = ∂t B − ∇ × (u × B − η∇ × B) (3)

where ρ is the mass density, u is the fluid velocity vector, p =
ρc2 is the thermal pressure with c the isothermal sound speed, B
is the magnetic field and J = 1

4π∇ × B is the current vector. ν
and η are respectively the viscous and resistive coefficients. The
components of the viscous stress tensor S are expressed as :

S i j[u] = ∂iu j + ∂ jui −
2
3
∂kukδi j (4)
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where ∂i denotes the derivative with respect to the space coordi-
nate i.

To integrate these equations, we use the code CHEMSES
(Lesaffre et al. 2020), which originates from DUMSES (Fro-
mang et al. 2006), a version of RAMSES (Teyssier 2002) with-
out adaptive mesh refinement. The ideal part of the evolu-
tion step is evolved thanks to a Godunov scheme with a Lax-
Friedrichs Riemann solver and a minmod slope limiter function
(see Toro 1999, for details). The magnetic field is evolved with
constrained transport to preserve its zero divergence (Fromang
et al. 2006). This ideal MHD step is sandwiched between two
half dissipation steps to preserve the second order accuracy of
the time integration (see Lesaffre et al. 2020, for more details).
CHEMSES inherits the centering of the RAMSES code, with
densities and velocity components at the center of cells and mag-
netic fields components at the center of their respective cell inter-
face (Fromang et al. 2006). The resistive and viscous stresses are
centered accordingly, and a diffusion estimate (for both viscous
and resistive dissipation) replaces the reference Courant time
step whenever it is shorter. For example, the viscous diffusion
time step constraint is ∆τ = (∆x)2/(6ν) where ∆x is the pixel
size. We set the Courant number1 at the value of 0.7 through-
out all the simulations of the present paper. Note that unlike
isothermal MHD, we use a constant kinematic viscous coeffi-
cient ν rather than a constant dynamical viscosity µ = ρν, as this
allows easier numerical convergence for shocks (see appendix
B).

2.1.2. Initial conditions

Init. cond. N η Pm Hc Hm

ABC 512 7 × 10−4 1 2 × 10−3 0.2
ABC 1024 7 × 10−4 1 2 × 10−3 0.2
ABC 1024 7 × 10−4 4 2 × 10−3 0.2
ABC 1024 7 × 10−4 16 2 × 10−3 0.2
OT 512 7 × 10−4 1 0.1 2 × 10−9

OT 1024 7 × 10−4 1 0.1 2 × 10−9

OT 1024 7 × 10−4 4 0.1 2 × 10−9

OT 1024 7 × 10−4 16 0.1 2 × 10−9

Table 1: Parameters of simulations we analyse: initial flow, reso-
lution, resistivity η, Prandtl number ν/η, cross and magnetic he-
licities. All the simulations start with an r.m.s. sonic Mach num-
ber Ms = 4 and an r.m.s. Alfvénic Mach number of 1, with a
zero mean magnetic field.

The quantities computed in the code are dimensionless. They
are normalised by physical scales set such that initially the av-
erage square velocity is < u2 >= 1, the cubic domain size is
L = 2π and the average density < ρ >= 1 where the brack-
ets denote averages over the whole simulated domain. The non-
dimensional value of the isothermal speed c thus controls the
r.m.s. initial sonic Mach number asMs = 1/c. The initial den-
sity is uniform and the initial magnetic field is scaled to obtain
< 1

4πB2 >=< ρ >< u2 >= 1 so that the effective r.m.s. initial
Alfvénic Mach number is equal to 1, as well as the r.m.s. initial
Alfvén speed (cA). Note that the mean magnetic field is zero over
the computational domain.

For example, imagine one wants to apply these results to a
physical region of physical dimension `, of r.m.s. velocity ur.m.s.

1 By Courant number we mean here the ratio between the used time
step and the shortest numerically unstable time step.

and average density ρav. Then dimensionless quantities in the
code can be converted to physical quantities according to: xphys =
`/(2π).x for distances, uphys = ur.m.s..u for velocities, and Bphys =

ur.m.s.
√

4πρav.B for magnetic fields.
As in Momferratos et al. (2014), we consider a periodic

box with initial conditions based either on the Arnol’d-Beltrami-
Childress flows (ABC, see Bouya & Dormy 2013, for example)
or on the Orszag-Tang vortex (OT, Orszag & Tang 1979). For
the ABC flow, the velocity field is set by a superposition of sines
and cosines:

uABC = (A sin(kz) + C cos(ky), B sin(kx) + A cos(kz),
C sin(ky) + B cos(kx)), (5)

where A, B, C are coefficients chosen for the three smallest wave
numbers k (largest scales) from a uniform number generator
in the interval [−1, 1]. For smaller scales, a random field uE is
added, with energy spectrum

E(k) = CEk−3 exp
(
−2(k/kc)2

)
, (6)

where kc = 3, and CE is chosen so that < u2
E >= 1. This

random field is set in Fourier space with the amplitude of the
complex coefficients prescribed by the above spectrum and the
phase of each coefficient is drawn from a uniform distribution
in the interval [0, 2π]. The perturbed initial ABC velocity field
u = α(uABC + uE) is rescaled so that < u2 >= 1 by properly
setting α. The initial magnetic field for the ABC runs is set with
a random field drawn in a similar way as uE.

The OT vortex velocity is defined by

uOT = (−2 sin(y), 2 sin(x), 0), (7)

to which we also add random perturbations as in the ABC case.
And the initial magnetic field for the OT vortex is set as

BOT = (−2 sin(2y) + sin(z), 2 sin(x) + sin(z),
sin(x) + sin(z), (8)

without additional perturbation. The velocity and magnetic fields
are then rescaled so that < u2 >=< 1

4πB2 >= 1.
Our ABC flows have a significant magnetic helicity (Hm =<

A.B > where A is the potential vector, B = ∇ × A with
Coulomb gauge divA = 0) and an almost zero cross helicity
(Hc =< u.B >). That means the magnetic field is topologically
complex and there is no strong correlation between magnetic and
velocity field. For OT initial conditions the situation is reversed,
it has an almost null magnetic helicity and a non zero cross he-
licity (see table 1 for the values of helicities).

In addition to the initial conditions, we also investigate the
resolution: our fiducial runs have a number of pixels N = 1024
per side of the cubic computational domain and we degrade the
resolution by a factor two to control the stability of our results.
We also probe the effect of varying the Prandtl number Pm =
ν/η. Table 1 summarises the parameter space we cover.

2.2. Dissipation recovery and control

The numerical scheme we use (Godunov) implicitly introduces
dissipation to evolve the ideal MHD equations, but as stated
above, we incorporate additional explicit physical dissipation
terms in our evolution equations. Indeed, it is important to retain
some amount of physical viscosity as Godunov schemes do not
provide an implicit viscosity in shear layers. Here, we discuss
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Fig. 1: Time evolution of volume integrated dissipation rates for
the ABC and OT, Pm = 1 runs. The blue line is the time deriva-
tive of the integrated isothermal generalised mechanical energy
E =< 1

2ρu2 + B2

8π + p log ρ >. The orange curve is the sum of the
physical viscous and ohmic dissipations computed from the ve-
locity and magnetic fields (equations 11 and 12 respectively).
The green line is the volume integrated corrected dissipation
field εcorr

tot determined by our recovery method (see text and Ap-
pendix B). Note that the time scale is in units of initial turnover
time scale: we display t/tturnover where tturnover = L/

√
< u2 > =

2π.

our methods to estimate the fraction of the dissipation which is
due to the numerical scheme.

We set values for the viscous and resistive coefficients ν
and η identical to those used by Momferratos et al. (2014) in
pseudo-spectral simulations with 5123 spectral elements: ν =
η = 7 × 10−4 in the same non-dimensional units. This is mo-
tivated by the common belief that spectral codes are approxi-
mately twice more efficient as grid based codes. Our study for
shocks in appendix B presents a more detailed picture. Figure
B.1 shows the dissipation bump in a fiducial shock front at var-
ious resolutions. For our chosen values for the dissipative coef-
ficients and a resolution of N = 1024, we see it is effectively
spread up by nearly a factor of three, while one would have to
increase the resolution by a factor 8 to fully resolve it. A reso-
lution twice less would spread the front by a factor six and thus

our current choice is a good compromise between accuracy and
CPU efficiency.

In isothermal MHD, the integrated total isothermal gener-
alised mechanical energy E =< 1

2ρu2+ 1
8πB2+p log ρ > decreases

due to all irreversible processes taking place (see equation B.3).
Because our Godunov time integration scheme is conservative
to round-off error, we can use its time derivative to estimate the
global budget of dissipated energy:

−
dE
dt

=< εtot > (9)

where < εtot > is the total rate of irreversible heating integrated
over the whole computational domain. Appendix B presents and
tests a new method to estimate locally the total irreversible heat-
ing εtot. The chosen method has the additional advantage that
it preserves to round-off error the validity of equation (9) when
integrated over the whole domain.

We can now decompose the local total heating rate as

εtot = εν + εη + εnum (10)

where

εν = ρνS i j[u]∂iu j (11)

and

εη = 4πηJ2 (12)

are the local viscous and resistive dissipative heating rates, and
εnum is the dissipation due to the numerical scheme.

We can then estimate the local numerical dissipation rate
simply by computing εnum = εtot − (εν + εη) where we use well
centered estimates for equations (11) and (12). It turns out that
due to the uncertainties in our estimation, this quantity is not
always positive, while we know it should be because we are per-
forming our simulations with a time step small enough for the
scheme to be stable (it is set to 70% of the shortest unstable time
step). We thus define εcorr

tot as a corrected local total dissipation
rate which ensures the resulting estimate for εnum is positive. It
is equal to the total local dissipation εtot where the numerical dis-
sipation is positive (i.e. where εtot > (εν+εη)), while it is equal to
the total physical dissipation εν + εη elsewhere. This ensures the
corrected local numerical dissipation rate εcorr

num = εcorr
tot − (εν + εη)

is always positive. In particular, the local corrected total dissipa-
tion rate εcorr

tot is always greater than εtot. It is then shared between
resistive and viscous natures in the same proportions as the phys-
ical terms we introduced to provide estimates for viscous and
resistive dissipations including numerical dissipation:

εcorr
ν =

εν
εν + εη

εcorr
tot (13)

εcorr
η =

εη

εν + εη
εcorr

tot (14)

Figure 1 displays the temporal evolution of various total dis-
sipation rates. Thanks to the equality (9), we can compute the ex-
act total dissipation rate at each time step (blue curves), and we
can compare it to the integrated local estimate < εcorr

tot > (green
curves) which by construction is always greater. The difference
between the two gives an estimate of the error we make on the
estimation of the dissipation (on the order of a percent at most).
It corresponds to the integrated estimated εnum in all the pixels
where it is negative. The orange curves show the integrated phys-
ical dissipative terms < εν + εη >. They amount to about two-
thirds of the total, while the remainder is numerical dissipation
by the scheme.
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2.3. The local frame of physical gradients

We know local intense dissipation events are caused by strong
variations of some of the fluid state variables. Here, we want
to identify regions where the fluid state varies strongly and to
characterise its variations in each direction.

The fluid state is characterised by the seven (1+3+3) com-
ponents of W = (ρ,u,B), which do not have the same physical
dimensions. We want to put the variations of density, velocity
and magnetic fields on equal footing. Hence, we need to rescale
the gradient of each component of W to make them homoge-
neous to the same physical dimension. We now choose to define
the rescaled gradient of W in a given direction r as

∂r̂W ≡
(r̂ · ∇) log ρ,

1
c

(r̂ · ∇)u,
1

c
√

4πρ
(r̂ · ∇)B

 (15)

where r̂ = r/r is the unit vector in the direction of r. This
rescaled gradient has the dimension of the inverse of a length
scale, which represents the typical length scale over which the
state variables vary in the direction r̂.

The norm of this gradient will be large whenever there is a
rapid change in one or several state variables. Its square can be
expressed as

||∂r̂W||2 = αi j r̂i r̂ j, (16)

where αi j = ∂iW · ∂ jW is a 3×3 matrix (and the dot product
applies to the seven components vectors) with coefficients ho-
mogeneous to an inverse squared length. It is real symmetric,
and therefore diagonal in an orthonormal basis. We can rewrite
equation (16) in a more explicit form

||∂r̂W||2 =
1
`2

scan
(r̂ · r̂scan)2 +

1
`2
⊥1

(r̂ · r̂⊥1)2 +
1
`2
⊥2

(r̂ · r̂⊥2)2 (17)

where `2
scan, `2

⊥1, and `2
⊥2 are the inverse of the eigenvalues as-

sociated to the eigenvectors r̂scan, r̂⊥1, and r̂⊥2 of the matrix αi j.
Equation (17) shows how the gradient of state variables depends
on directions. A 3D polar plot of the norm of this gradient takes
the form of an ellipsoid whose principal axes are in the three
orthogonal eigenvalue directions of the above matrix:

`scan = ||∂r̂scanW||−1, `⊥1 = ||∂r̂⊥1W||−1, `⊥2 = ||∂r̂⊥2W||
−1 (18)

with the three length scales ordered so that `scan ≤ `⊥1 ≤ `⊥2.
These three variation length scales and their associated orthogo-
nal directions characterise the local geometry of the gradients of
the fluid state variables.

Figure 2 shows how the aspect ratios between these typical
variation length scales are distributed in all cells of a simulation
(left panel) and for only highly dissipating ones (four standard
deviations over the mean, right panel). It shows that most fluid
state variables vary primarily in one direction for extreme dissi-
pation events, whereas aspect ratios span all possibilities if we
consider the full simulation domain. We also notice a slight im-
balance towards ribbons compared to sheets. When one variation
direction is dominant (`scan << `⊥1 ≤ `⊥2), quantities are essen-
tially constant in the direction orthogonal to it and the local sit-
uation is hence nearly 1D plane-parallel. We thus define the pla-
narity as the ratio `⊥1/`scan which is large whenever `scan << `⊥1,
i.e. when the local geometry is close to plane-parallel.

This one-dimensional geometry of gradients for intense dis-
sipation regions is consistent with the typical two-dimensional
geometry of the structures found in MHD turbulence (Uritsky
et al. 2010; Zhdankin et al. 2013; Momferratos et al. 2014). On

intense dissipation structures, we should thus be able to capture
most fluid variations by browsing those along the maximum gra-
dient direction. In section 3.2 we use r̂scan as a sampling direc-
tion to probe the variation of physical quantities around strong
dissipation regions.

2.4. Gradient decomposition into MHD waves

In the ideal case where the gradient would be strictly in one
direction, the gas dynamics are governed by 1D plane-parallel
MHD equations, and we show here how local gradients can be
projected onto ideal MHD waves.

We write x the space coordinate along the direction of the
gradient and t the time coordinate. The requirement ∇.B = 0
implies that ∂xBx = 0: the corresponding component of ∂xW is
thus zero. It turns out that the six non zero components of ∂xW
are spanned by the six ideal MHD waves, as we now turn to
show.

Wave solutions take the form W(x, t) = F(x − 3t) where 3 is
the traveling speed of the wave. We note that ∂t F = −3∂xF and
plug this form into the ideal MHD part of the equations (without
the dissipation terms). We arrive at a linear eigenvalue problem
for which we can find six eigenvectors ∂xF with eigenvalues 3
corresponding to the six waves of ideal isothermal MHD2. We
label them by their wave type s, i, f for slow, intermediate and
fast and their direction of propagation R, L for right (or forward,
3 > 0) and left (or backward, 3 < 0). To within a multiplica-
tive constant, the expressions for these eigenvectors are (see sec-
tion 5.2.3 of Goedbloed et al. (2019) or section 6.5 of Gurnett &
Bhattacharjee (2005), for example) :

– for intermediate (Alfvén) waves

∂x̂FR,L
i ∝ (0, εR,La⊥t ,−sign(ax)a⊥t ) (19)

where εR,L = −1 for left-going (backward going) waves
and εR,L = 1 for right-going (forward going) waves, a =

B/
√

4πρ is the Alfvén velocity vector, at is the transverse
component of a, ax is its x-component and a⊥t is at rotated
by π/2 in the transverse plane. The first component of this
gradient is zero, hence the density is uniform. And the trans-
verse magnetic field has its gradient orthogonal to itself: it
rotates along the scanning direction. The corresponding trav-
elling speed is cR,L

i = εR,L|ax|.
– for fast and slow magnetosonic waves

∂x̂FR,L
s, f ∝ (−

c

cR,L
s, f

, x̂ −
ax

d
at,

cR,L
s, f

d
at) (20)

where the propagation speed cR,L
s, f reads:

cR,L
s, f = εR,L

√
(c2 + a2) + ε f ,s

√
(c2 + a2)2 − 4a2

xc2 (21)

with d = (cR,L
s, f )2 − a2

x and ε f ,s = 1 for fast waves or -1 for
slow waves. These waves are compressive (the density gradi-
ent is non-zero) and the gradient of transverse magnetic field
is aligned with itself. In other words, the transverse magnetic
field remains in the same direction, which also happens to be
the same direction as the variation of the transverse velocity.

2 Note that formally, finding the gradient ∂x F is equivalent to solving
the amplitude for the linear wave problem when we identify ∂t ≡ iω,
∂x ≡ ik and 3 = ω/k matches the phase velocity.
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Fig. 2: The 2D joint probability density function of gradients aspect ratios (for the OT simulation at Pm = 1 at time t = tturnover/3).
On the left, characteristic lengths are calculated for all the simulation cells. While on the right, the domain is restricted to cells
where εcorr

tot ≥
〈
εcorr

tot
〉

+ 4σεcorr
tot

. The color scale is logarithmic.

Both the velocity and the magnetic field vectors thus remain
in the plane defined by the scanning direction x̂ and the ini-
tial transverse field (a property sometimes referred to as the
coplanarity of these waves).

These six gradients form an orthogonal basis which can be
easily normalised to make it an orthonormal basis êR,L

s,i, f =

∂x̂FR,L
s,i, f /||∂x̂FR,L

s,i, f || .
Any gradient ∂x̂W can now easily be decomposed into the

six waves by computing the scalar product αR,L
s,i, f = êR,L

s,i, f .∂x̂W.
Thanks to orthonormality, we have

∑
R,L,s,i, f (α

R,L
s,i, f )

2 = ||∂x̂W||2

and each coefficient (αR,L
s,i, f )

2/||∂x̂W||2 can be interpreted as a 0 to
1 coefficient which characterises how similar the gradient ∂x̂W is
to the corresponding ideal MHD wave. We call ’most represen-
tative wave’ the wave with the largest coefficient in this decom-
position. The most representative wave characterizes the local
gradient as slow, intermediate or fast, each one in a left (back-
ward) or right (forward) going version depending on the sign of
its speed relative to the fluid cR,L

s,i, f . Note also that this decomposi-
tion does not change if we add a constant vector to the velocity:
it is independent from the choice of Galilean frame.

Until now, we have only considered wave solutions of the
ideal part of the MHD equations (without dissipation), while the
gradients in our simulation result from the evolution of fully dis-
sipative MHD. Let us now consider a non-linear wave solution of
the 1D fully dissipative MHD Ffull(x− 3fullt), such as the isother-
mal shocks of appendix A, for example. The profile of this wave
continuously joins two uniform states related by the Rankine-
Hugoniot relations (see subsection 3.3). These two states are
separated by a region where dissipation occurs. Consider the gas
state at the local maximum of dissipation: this is where the gradi-
ents of the state variables are the largest, and where the gradient
of viscous and resistive stresses are likely to be small (because
we are close to their maximum). At this position, the 1D dissi-
pative physics behaves like the 1D ideal physics, and we can ex-
pect that the measured gradients fall along one of the ideal wave
gradients we described above. As a result, the fully dissipative
wave speed should be well approximated by its ideal estimate:
3full ' ux + cR,L

s,i, f where ux is the fluid velocity and cR,L
s,i, f applies

to the most representative wave at the dissipation maximum. We
will make use of this fact in the following to estimate the steady-
state velocity of the structures we detect (see section 3.3.2). Fur-
thermore, we investigated the gradients of semi-analytic isother-
mal shock profiles (computed in appendix A) and we noticed that
gradients in slow shocks are dominated by slow magnetosonic
waves all along their profiles. Similarly fast shocks gradients are
dominated by fast magnetosonic waves. This result seems natu-
ral but we find it nevertheless surprising that dissipative physics
does not affect more the nature of gradients and we did not yet
find a satisfactory explanation for this behaviour.

Finally, note that we can always decompose a gradient in a
given direction, but it makes less sense if the 3D gradient is not
strongly dominated by a single direction. By selecting intense
dissipative cells, however, we are more likely to be in a situation
where the gradient is well directed (see figure 2 and previous
subsection).

3. Dissipation structures

3.1. Definition and visualization

In turbulent MHD flows, the bulk dissipation of kinetic and mag-
netic energy occurs in a small volume compared to the global
scale of the flow. Dissipation has been analyzed and observed in
several studies (e.g. Uritsky et al. 2010; Zhdankin et al. 2013;
Momferratos et al. 2014) to be organized in coherent structures,
ribbon-shaped or sheet-like.

Figure 3 shows isocontours of the total dissipation rate εcorr
tot .

The dissipation rate in each cell is computed using the method
described in appendices A and B. We follow previous work
(Uritsky et al. 2010) and define a connected dissipation struc-
ture as a connected set of cells where

εcorr
tot ≥

〈
εcorr

tot
〉

+ λ × σεcorr
tot
, (22)

with λ a parameter we use to tune the detection threshold, εcorr
tot

the dissipation rate determined by our method and σεcorr
tot

the stan-
dard deviation of the dissipation rate distribution. We choose
λ = 4 because we find that energy transfers are mainly due to
events above 4σ: we checked that the bulk of the third order
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Fig. 3: Intense dissipation structures extracted from an OT initial
conditions simulation with Pm = 1. The time step of this output
is t ' 1/3tturnover. Structures are shown through dissipation iso-
contours. The first one in blue is set at εcorr

tot =
〈
εcorr

tot
〉

+ 4 × σεcorr
tot

.
The second in beige is at 8 times the standard deviation above
the mean value and the last one, in red is at 13.5 times.

structure function (responsible for energy transfers) is obtained
from increments above 3-4 sigma. We also want the structure to
be identifiable as clearly as possible and we expect such high dis-
sipation structures to be associated with more intense gradients
and a more clear-cut physical nature.

As already hinted at by local gradients (figure 2), we see on
figure 3 that extracted dissipation structures are mainly sheets.
Another way to see this is to look at a thin slice of the dissipa-
tion field in our OT simulation with Pm = 1 (figure 4) where the
trace of the sheets appears as thin ridges. Compared to the same
figure for the incompressible runs of Momferratos et al. (2014),
the viscous and Ohmic natures of dissipation are now much more
entangled and sometimes even overlap. A close eye inspection of
this figure (and of similar cuts at other time steps and initial con-
ditions) reveals various sub-layering of Ohmic dissipation sheets
(red striations or ohmic dissipation wrapped by shear) or isolated
viscous and ohmic heating sheets (purple color, which hints at a
mix of compressive viscous heating and ohmic heating). These
are not the only situations which occur, but it reveals that the in-
tense dissipation sheets are not always randomly positioned with
respect to one another.

A careful inspection of figure 3 allows to witness a few small
filament-like structures. Some of them may be traced on figure
2 by the low-probability tail in the bottom right hand corner of
the right panel, where the aspect ratios of the gradients are such
that `scan ' `⊥1 while `⊥1 >> `⊥2. These tube-like structures will
unfortunately be missed by our systematic investigation which
focuses on locally planar structures, but we checked a posteriori
that these structures only account for a very small fraction of the
dissipation (less than one percent).

Figure 5 shows how the dissipation is distributed in vol-
ume: it gives the volume filling factor of the regions of large
dissipation as a function of their dissipation fraction. This fig-
ure compiles several time steps up to t = 1.33tturnover, where
tturnover = L/

√
< u2 > = 2π is the initial eddy turnover time.

It shows that the intermittency of the dissipation decreases over
time, as the r.m.s. sonic Mach number decreases (we consider

Fig. 4: Dissipation cut at time t = 1/3tturnover for the OT initial
conditions with Pm = 1. Lower and upper thresholds have been
applied to the 3% pixels with smallest and largest dissipation,
the intensity scaling of the pixels is logarithmic, while the colors
code for Red: Ohmic dissipation εη = 4πηJ2, Blue : compressive
viscous heating εcomp = 4/3ρν (∇ · u)2, and Green : solenoidal
viscous heating εsol = ρν (∇ × u)2. Beware that εcorr

tot , εcomp +
εsol + εo, both locally and globally (because we use a uniform ν
and not a uniform ρν, see Lesaffre et al. (2020)). Note that there
is very little compressive heating (blue).
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decaying turbulence simulations). We see here that structures
shown on figure 3 (yellow lines for dissipation greater than four
standard deviations above the mean) occupy ' 0.8% of the vol-
ume while they are at the origin of ' 25% of the total dissipation
rate.

3.2. Identification of structures

We develop here the details of our procedure to identify scans
along the connected structures.

3.2.1. Scanned profiles

We consider each connected dissipation structure one at a time.
At a selection of cells (see our selection strategy in subsection
3.2.5), we take r̂scan as a scanning direction on which we sam-
ple the magnetic field, fluid velocity, density and total pressure
P = ρc2 + 1

8π ||B⊥||
2 where B⊥ is the magnetic field transverse to

the scanning direction. Note that we do not include the contri-
bution to the total pressure of the magnetic field component in
the scanning direction, because it should remain uniform along
this direction. We linearly interpolate their values every 0.2 cell
side length (this is to avoid accuracy asymmetries resulting from
the staggered position of the magnetic field components). As in
SHOCK_FIND (Lehmann et al. 2016), each value is then av-
eraged over a 3-cell radius disk, orthogonal to the scanning di-
rection. This smooths profiles and makes our identification less
sensitive to the orientation of the scanning direction with respect
to the cell edges. Four representative scans are displayed on fig-
ure 6.

3.2.2. Pre- and post- positions

To identify each side of the discontinuity causing the dissipation
peak, we define reference positions pre- and post-discontinuity.
To do so, we examine the total dissipation profile along the scan
direction (figure 6, second row), and we estimate the local scale
of variation of dissipation `ε by fitting a parabola on log εcorr

tot
over two cell lengths. The resulting scale `ε is usually between
2 and 4 cells length. We adopt +/- 3 `ε as a good compromise:
not too close to the dissipative layer so that the dissipative terms
are negligible and not too far away so that the dynamics are still
dominated by the discontinuity.

To improve the reliability of our identification criteria, we al-
low ourselves to change the sign of the director vector rscan. We
adopt the direction in which the total pressure and density in-
creases from pre- to post-discontinuity. The sign of r⊥1 is mod-
ified to keep a right-handed coordinates system. If density and
total pressure variations are opposite, we then choose the direc-
tion of propagation of the dominant ideal wave in the gradient
decomposition in ideal waves presented in section 2.4.

3.2.3. Heuristic criteria

We first design three categories according to the classical MHD
shock types classification that derive from Rankine-Hugoniot
(RH) jump conditions: fast shocks, slow shocks and Alfvén dis-
continuities (see section 3.3). We define three heuristic criteria
to sort the resulting profiles into these categories:

– H1. Fast shock : Total pressure rise and transverse magnetic
field rise.

– H2. Slow shock : Density rise and transverse magnetic field
decrease.

– H3. Alfvén discontinuity : Density bump and transverse
magnetic field trough.

To determine the variation of the profiles we compare
the values of the pre-discontinuity, peak dissipation and post-
discontinuity positions, and each of these values is averaged over
a 1-cell side window to avoid spurious variations. By ’rise’ and
’decrease’, we mean that the variation is monotonic across these
three positions, while by ’bump’ (resp. ’trough’) we mean the
central value is above (resp. below) the other two positions.

For shock identifications, the total densities and pressures
must increase. However, for fast shocks, the jump in density is
small compared to the jump in total pressure. In some cases,
the uncertainty on the position of the post-shock could lead to
a non-identification if the relaxation of the post-shock pressure
to that of the ambient medium is fast enough. This is why we
don’t consider a density rise as a reliable criterion for fast shock
identification. Slow shocks are the opposite case, the total pres-
sure jump is small compared to the density jump. We then don’t
include the total pressure rise criterion to identify them.

Profiles that do not fall into any of the categories are flagged
as unidentified.

3.2.4. Gradient decomposition criteria

We now supplement these heuristic criteria by using the gradi-
ent decomposition method described in section 2.4. Gradient de-
composition is another method to characterise locally the nature
of the variations of gas state variables across discontinuities. The
use of this technique on the analytical profiles of 1D isothermal
fast and slow shocks (as computed in appendix A) shows us that
they decompose into almost pure fast and slow magnetosonic
waves respectively. We have no prior information on the wave
decomposition of Alfvén discontinuities, but we find that pro-
files corresponding to our heuristic criteria for Alfvén disconti-
nuities yield two exclusive cases: they either decompose mostly
into intermediate waves, or they decompose mostly into slow
magnetosonic waves.

For the specific case of a transverse magnetic field inversion,
(i.e. the transverse magnetic fields are opposite of each other on
the pre- and post- sides of the profile) we find there are two
possible ways for it go from one side to the other side: it can
rotate continuously until reaching the angle π, or it can use a
co-planar path by shrinking until it vanishes and then expand in
the other direction. These two situations cannot be distinguished
from pre- and post-discontinuity values alone, as in the classical
view of Rankine-Hugoniot relations. The difference resides in
the internal structure of the discontinuity itself, with in one case
a rotation (which has a gradient decomposition dominated by in-
termediate waves) and in the other case a co-planar variation of
the transverse magnetic field (for which we find a gradient de-
composition dominated by slow magnetosonic waves).

For each scan, we thus estimate the relative weight of each
type of ideal waves decomposition averaged over the scan as

Fs,i, f =

∫ xpost

xpre
dx

[
(êR

s,i, f .∂x̂W)2 + (êL
s,i, f .∂x̂W)2

]
∫ xpost

xpre
dx||∂x̂W||2

(23)

where subscripts s, i, f are for slow, intermediate or fast. x is the
position along the scanning axis. xpre and xpost are the pre- and
post- discontinuity positions respectively. Note that Fs + Fi +
F f = 1.
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Fig. 6: Representative scan profiles used to identify the different kinds of dissipation structures in our simulations (here, for the
ABC simulation at Pm = 1 at time t = tturnover/3). The four first rows of plots show respectively velocities (in the local velocity
frame of the scan, and normalized by the initial r.m.s Alfvén speed), dissipation rates, density and total pressure, and magnetic field
components profiles. The last row shows gradients decomposition into ideal waves. The colored surfaces in between the curves is
proportional to the weight of each corresponding ideal wave (in the decomposition presented in section 2.4). Vertical dashed lines
on each plot mark the positions of pre- and post-discontinuity that we define in section 3.2.2.

Our identification criteria take into account the agreement
between the heuristic and the ideal wave gradient decomposi-
tion methods. We therefore define as identified only those struc-
tures which show an agreement between the methods according
to these criteria :

1. Fast shock : H1 and fast wave dominated gradients (F f > Fs
and F f > Fi)

2. Slow shock : H2 and slow wave dominated gradients (Fs >
F f and Fs > Fi)

3. Rotational discontinuity : H3 and intermediate wave dom-
inated gradients (Fi > F f and Fi > Fs)

4. Parker sheet : H3 and slow wave dominated gradients (Fs >
F f and Fs > Fi).

Representative example profiles of the four kinds of dissipative
events we encounter are shown on figure 6. For some profiles
the dominant wave weight does not correspond to the heuristic
type: we flag them as misidentified. Finally, note that our divide
between rotational discontinuities and Parker sheets may be ar-
bitrary. We found no metric in which the statistics for these two
classes clearly separate (i.e. with a gap between them), and there
are on the contrary many indications that they just form the two
sides of a continuum of Alfvén discontinuities.

3.2.5. Scanning strategy

We examine each connected dissipation structure one at a time.
We sort the cells of a given structure by decreasing planarity
(`⊥1/`scan) to get the most reliable identification: the most planar
cells are scanned first. To prevent overlap of integration domains
and to save computation time, once a scan has been indentified,

we remove cells around it from the remaining cells to be iden-
tified. We remove all the cells that belong to a rectangle par-
allelepiped, whose square faces are orthogonal to the scan axis
and have a side length of 20 cells side length. We then examine
the next most planar cell in the remainder of the structure, until
we exhaust all cells for that structure. Once we have considered
all available structures in the computational domain, we have a
list of scans with their identification, for which we discuss the
statistics in section 4.

3.3. Rankine-Hugoniot validations

Rankine-Hugoniot (RH) relations express jump conditions
across discontinuities in their stationary frame (Macquorn Rank-
ine 1870; Gurnett & Bhattacharjee 2005). RH relations hold in a
very specific situation where the fluid is stationary, with a plane
parallel symmetry and homogeneous conditions on either side of
a discontinuity. Nothing seems further away than our fully tur-
bulent decaying turbulence simulations. Nevertheless, we want
to check if our structure identification allows to recover some
of the properties expected from the RH relations. If they hold,
it would bring more weight to the selection criteria we have de-
vised, and it would generalise to 3D MHD the results of Lesaf-
fre et al. (2020) who found that in 2D decaying unmagnetised
turbulence, 1D steady-state shocks could be used to model the
strongest dissipation structures. In 1D steady-state isothermal
MHD, conservation of mass, momentum and magnetic field read

[
ρu · n

]post
pre = 0, (24)
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ρu (u · n) +

(
p +

B2

8π

)
n−

(B · n) B
4π

]post

pre
= 0, (25)

[B · n]post
pre = 0, (26)

[n× (u × B)]post
pre = 0, (27)

where []post
pre denotes the difference between the states at pre- and

post- discontinuity. n is the normal to the discontinuity. In our
study, we take n = r̂scan, which contains most of the gradient for
highly dissipative cells (see figure 2). In other words, the planar
region hypothesis which subtends RH relations is well verified
for the most intense dissipative regions.

Across the discontinuity, the velocity of the fluid transitions
from above to under a characteristic speed set by the three MHD
linear wave speeds (cR

s,i, f , see section 2.4). This leads to the tradi-
tional MHD velocity regimes classification (Delmont & Keppens
2011), where numbers designate up- and downstream states, and
un = u.n:

– 1- superfast un ≥ cR
f

– 2- subfast/super-alfvénic cR
i ≤ un ≤ cR

f
– 3- sub-Alfvénic/superslow cR

s ≤ un ≤ cR
i

– 4- subslow un ≤ cR
s

The discontinuity type is labelled by i → j, where i ≥ j.
These discontinuity types show different behavior for the trans-
verse magnetic fields :

– 1→ 2 are fast shocks. Magnetic field is refracted away from
the shock normal, which yields a transverse magnetic field
increase. Fast shocks efficiently convert kinetic to transverse
magnetic energy.

– 3 → 4 are slow shocks. Magnetic field is refracted toward
the shock normal, which yields a transverse magnetic field
decrease. Slow shocks are efficient at compressing the gas.

– 1 → 3, 1 → 4, 2 → 3, 2 → 4 are intermediate shocks. The
transverse magnetic field flips across the shock normal.

– 2 = 3→ 2 = 3 are called Alfvén discontinuities or rotational
discontinuities. The norm of the transverse magnetic field is
unchanged between pre- and post-discontinuity regions, and
only its direction changes in the plane parallel to the discon-
tinuity. Alfvén discontinuities are believed to be efficient at
reconnecting the field lines (Zweibel & Brandenburg 1997;
Zhdankin et al. 2013).

Density and total pressure profiles also show different signatures.
In the first three cases, these profiles are jumps whose amplitude
depends on the parameters of the shock. In the case of Alfvén
discontinuities, these quantities must be identical on both sides
of the discontinuity.

3.3.1. Transverse magnetic field

Each type of RH discontinuity exhibits a different signature in
the transverse magnetic field evolution from pre- to post- dis-
continuity. Our heuristic criteria to identify structures with 1D
profiles use only the norm of the transverse magnetic field. We
now examine the behaviour of the direction of the field to check
its consistency with the RH relations, and we plot each structure
in the form of an hodogram. We normalize the pre-discontinuity
magnetic field and rotate our frame so that every scan has the
same starting point. Applying the same rotation and normaliza-
tion to post-discontinuity magnetic field allows us to see rela-
tive variations in norm and angle of the transverse magnetic field
across the discontinuity :

Fig. 7: OT Pm = 1 run near dissipation peak (at time t =
1/3tturnover). Hodogram in which the pre-shock magnetic field
is normalised and rotated such that B̃⊥1 = 1 and B̃⊥2 = 0. The
post-shock magnetic field is plotted according to this rotation
and normalization. Red dots denote fast shocks, blue ones slow
shocks, green is for rotational discontinuities and cyan is for
Parker sheets. On the right the top plot is the probability density
function of the number of blue dots from the left plot. The bot-
tom right one is for red dots. Dashed line is the unity radius circle
that separates discontinuities where the transverse magnetic field
increases (outside the circle) and those where it decreases (inside
the circle).

Fig. 8: ABC Pm = 1 run near dissipation peak (at time t =
1/3tturnover). The left plot is identical to the one presented on fig-
ure 7. Top right plot shows the number of dots PDF for Parker
sheets. Bottom right is for rotational discontinuities.

(
B̃⊥1
B̃⊥2

)
=

1
|B⊥,pre|

2

(
B⊥1,pre B⊥2,pre
−B⊥2,pre B⊥1,pre

) (
B⊥1,post
B⊥2,post

)
(28)

where B⊥ = (B⊥1, B⊥2) is the transverse magnetic field in the
frame defined by the local gradient method (section 2.3). The
rotation matrix and the normalisation coefficient applied to the
magnetic field depend only on the pre-discontinuity magnetic
field components in this frame. B̃⊥ =

(
B̃⊥1, B̃⊥2

)
is the post-

discontinuity magnetic field that has been rotated and normal-
ized. In the following, the subscript n refers to the component
orthogonal to the discontinuity plane, Bn = B.n for the magnetic
field and un = u.n for the velocity field.

Alfvén discontinuities are characterized by un , 0 and[
ρ
]post
pre = 0, so equation (24) leads to [un]post

pre = 0. Conservation of
momentum flux equation (25) in the normal direction then yields
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B2
⊥

]post

pre
= 0. The transverse magnetic field norm is conserved

which, with our normalization, results in Alfvén discontinuities

remaining on the circle B̃⊥ =

√
B̃2
⊥1 + B̃2

⊥2 = 1.
Shocks are characterized by a fluid flow across the discon-

tinuity, un , 0, and a non-zero density jump,
[
ρ
]post
pre , 0. Mass

flux conservation equation (24) gives
[
ρun

]post
pre = 0, and with

[Bn]post
pre = 0 (equation 26) it allows us to rewrite the transverse

momentum flux conservation as

ρun [u⊥]post
pre −

Bn

4π
[B⊥]post

pre = 0 (29)

and the jump condition (27) becomes

ρun

[
B⊥
ρ

]post

pre
− Bn [u⊥]post

pre = 0. (30)

We first notice that
[

B⊥
ρ

]post

pre
, [B⊥]post

pre and [u⊥]post
pre are all co-

linear. Solving the second equation for [u⊥]post
pre and substituting

it into the first equation then gives

(ρun)2
[
B⊥
ρ

]post

pre
− B2

n [B⊥]post
pre = 0 (31)

that can be rewritten in the form

B⊥,pre

(
(ρun)2

ρpre
−

B2
n

4π

)
= B⊥,post

(
(ρun)2

ρpost
−

B2
n

4π

)
. (32)

It is clear from these equations that pre- and post- shock mag-
netic fields must be co-linear. On an hodogram, with the normal-
ization and rotation we apply to our post-discontinuity magnetic
field (see equation 28), all the shocks must remain at B̃⊥2 = 0,
while B̃⊥1 > 1 for fast shocks, 0 < B̃⊥1 < 1 for the slow ones
and B̃⊥1 < 0 for intermediate shocks.

On figures 7 and 8 hodograms are shown for respectively OT
and ABC initial conditions. The two PDFs of figure 7 show that
the vast majority of the points indeed cluster around the hori-
zontal axis, where RH relations predict that fast and slow shocks
should lie. Individual fast shocks that seem very far from copla-
narity correspond to switch-on shocks, a limiting case of fast
shocks, were the pre-shock transverse magnetic field is null: the
normalisation we introduced with respect to the pre-shock field
sends the finite post-shock magnetic fields to infinity... Neverthe-
less, the finite spread along the B̃⊥2 axis for slow and fast shocks
is an indication that there are deviations from the 1D RH rela-
tions. We conjecture that the origin of this discrepancy is due
to violation of the 1D mass flux conservation for a large num-
ber of scans. This can originate from a leak of material in the
plane of the shock (small deviations from the pure plane-parallel
case) and/or through the difficulty to accurately probe mass flux
conservation compared to other quantities, as noted in appendix
B.

The second hodogram in the ABC case (figure 8) highlights
Parker sheets (cyan dots) and rotational discontinuities (green
dots). As for figure 7, their 2D PDFs behave as expected from
RH relations: the transverse magnetic field norm remains un-
changed from pre- to post-shock, only the direction of the field
changes. Because Parker sheets are dominated by slow waves

gradients, which are co-planar, they are hence constrained to per-
form a full π rotation of the transverse field, which is indeed
where the PDFs cluster. A surprising result highlighted by the
PDFs is that rotational discontinuities have a lack of occurrences
for such full π rotations: inversions of the transverse magnetic
field mostly occur through co-planar structures (which we call
Parker sheets) rather than rotational discontinuities. The rota-
tional discontinuities also show no rotation angle less than π/2.
This is an effect of the threshold we apply in our method of de-
tection of high dissipation structures. Structures with lower ro-
tation of the transverse magnetic field dissipate less, and we do
not detect them (we have checked that we see smaller angles
when lowering that threshold to two standard deviations above
the mean instead of four).

There are also important differences between the initial con-
ditions ABC and OT concerning the distribution of the identifi-
cations of the different scans in the early times. These differences
will be discussed in section 4.1.

3.3.2. Velocities estimates

The velocity regimes pre- and post-discontinuity completely
characterise discontinuity types. However, to estimate them, we
must first determine the rest frame of the discontinuity with ap-
propriate accuracy. We compare three independent methods to
derive it :

– Mass flux conservation: To establish the stationary frame in
the SHOCK_FIND algorithm, Lehmann et al. (2016) derive
from equation (24)

uref =
uscan,post −

ρpre

ρpost
uscan,pre

1 − ρpre

ρpost

(33)

were uref is the traveling velocity of the discontinuity in the
frame of the computing domain. Note that when the density
contrast is weak, the denominator goes to zero, making this
estimate prone to large errors.

– Most conservative frame: We use all the other conserva-
tion relations. We first introduce the traveling velocity uref
with the frame change ũn = uscan − uref . We then we con-
sider the sum of he squared norms of the left hand sides of
equations (25), (26) and (27). When uref is indeed the veloc-
ity of the discontinuity relative to the gas, this sum should be
zero because all the conservation relations will be verified.
We therefore estimate uref as the velocity which minimises
the sum. Note that we drop mass conservation (24) from the
sum, because of mass leak through the working surface of the
discontinuities which makes it less accurate. This method is
inspired from a more general technique described in Lesaffre
et al. (2004) to compute the local stationary frame in multi-
fluid 1D simulations.

– Stationary wave frame: We use the propagation speed of
the most representative wave given by the gradient decom-
position at the dissipation peak (see section 2.4). Decompo-
sition in slow and fast waves are always pure right or left
going waves. We then simply choose the velocity at the dis-
sipation peak corresponding to this wave. On the other hand,
for intermediate waves, they are often right going on one side
and left going for the other. In this case we take the average
velocity weighted by the strength of the corresponding right
and left going wave (the two averaged velocities usually turn
out to be both small).
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Fig. 9: Comparison between different methods to access the
velocity of the gas entering in the discontinuity in its co-
moving frame (for the OT simulation at Pm = 1 at time
t = tturnover/3). ũscan,in [Wave] is the gas velocity de-
rived from the stationary wave frame (see subsection 3.3.2).
ũscan,in [Most conservative frame] is determined in the frame that
minimizes the violation of all fluxes conservation relations, mass
flux excepted. ũscan,in [Mass conservation] is the mass flux con-
serving frame.

On figure 9, we compare the fluid velocity entering in the
discontinuity by the pre-shock side (ũscan,in = uscan,pre − uref), in
the frame established with these three methods. On the top plot
we notice that the mass flux conservation method is inconsistent
with the stationary wave frame method for rotational disconti-
nuities and Parker sheets and to a lesser extent for fast shocks.
For Alfvén discontinuities, this is expected because of the weak
density contrast which blows up the denominator in the mass
flux conservation estimate. For shocks, the inaccuracy incurred
by the mass flux conservation could be due to the difficulty to
assess accurate mass conservation compared to other quantities,
as noted in appendix B. But it is more likely due to a genuine

mass flow that occurs in the dissipating layer of the disconti-
nuity, transverse to the propagation direction. The figure 10 il-
lustrates this phenomenon clearly: stream lines are converging
or diverging in the (r⊥1, r⊥2) plane on the last rows. This was a
known phenomenon for Parker sheets, where converging flows
orthogonal to the reconnection zones are balanced by diverging
flows in the plane of the current sheet. However, that this phe-
nomenon is also present for shocks and rotational discontinuities
is a discovery. In the case of shocks, we believe this provides
the mechanism which allows the relaxation of the post-shock
pressure toward that of the ambient medium. Furthermore, the
fact that the SHOCKFIND estimate for shocks is biased towards
higher values hints at mass loss in the direction transverse to the
working surface (or diverging streamlines, opposite to the exam-
ple case shown in figure 10 where it should however be noted
that the velocities are really small so that this mass loss is almost
insignificant).

The bottom plot of figure 9 shows a relatively good agree-
ment between the other two independent methods. However, the
stationary wave frame tends to give slightly higher velocities for
fast shocks and slightly lower for slow shocks. For Alfvén dis-
continuities, the agreement is optimal, no bias is observed. We
choose to use the stationary wave frame in the following, be-
cause it gives pre- and post- velocity regimes more consistent
with the RH nature of the discontinuities, which we now turn to
check.

3.3.3. Velocity regimes

With the proper frame set, we can now study the velocity regime
transitions. In order to represent up- and downstream states
for all identified scans we use a scatter plot with a normalisa-
tion conditioned by the regime: superfast(1) or subfast/super-
alfvénic(2) or sub-alfvénic/superslow(3) or subslow(4) :

1→ ûscan = 3 + |ũscan| − cR
f , (34)

2→ ûscan = 2 +
|ũscan| − cR

i

cR
f − cR

i

, (35)

3→ ûscan = 1 +
|ũscan| − cR

s

cR
i − cR

s
, (36)

4→ ûscan =
|ũscan|

cR
s

(37)

where ũscan is the velocity plotted on the diagram and
cR

s,i,f is the local positively signed slow, Alfvén/intermediate
or fast speed. Note that the usual integers characterising the
velocity regimes are in reverse order compared to our renor-
malised number ûscan. Figure 11 shows the resulting diagrams.
Coloured dashed lines delimit regions specific to the gas veloc-
ity regime of a particular discontinuity type (see section 3.3).
Columns give pre-discontinuity regimes, from left to right sub-
slow, sub-alfvénic/superslow, subfast/super-alfvénic and super-
fast. Whereas rows give access to the post-discontinuity velocity
regime, with the same sorting from bottom to top.

The diagram on the right of figure 11 shows the results for the
simulation with OT initial conditions. Because the points density
makes distributions difficult to appreciate at the densest regions,
we also compute 2D PDFs for shocks which we use to high-
light contours at the value of the median pixel (orange lines) and
the third decile one. Scans that are identified as fast shocks are
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Fig. 10: First two rows: cuts across the plane rscan-r⊥1 for four examples of structures we identify (for the same four scans as in
figure 6). Last row: cuts across the plane r⊥1-r⊥2 for the velocity stream lines. Top plots show magnetic field lines, while bottom
ones show velocity stream lines. The frame of reference is set to be the stationary wave frame at the center of these images. The
background is a two channel color map with red assigned to ohmic dissipation and blue to viscous.

located in the expected region for the most part, identified as
1 → 2 discontinuities. And the distribution of scans identified
as slow shocks are indeed 3 → 4 discontinuities. However, we
note that the slow shocks often have negative velocities out of
the shock (not shown). We believe this reflects the fact that the
post-shock state is affected by the mass loss in the plane of the
shock. The determination of the stationary reference frame by
the "most conservative" method gives more positive post-shock
velocities (consistent with lower pre-shock velocities as seen on
figure 9, bottom panel).

The ABC initial conditions case is shown on the left of figure
11, where PDFs contours are now used for Parker sheets and
rotational discontinuities. Those two are very peaked at 2 = 3→
2 = 3, where we expect Alfvén discontinuities in the traditional
MHD shocks classification (Delmont & Keppens 2011).

For both OT and ABC initial conditions, the distributions of
Alfvén discontinuities are stretched along the horizontal and ver-
tical directions. We find in these trailing populations an over-
representation of scans in which Bscan ' 0 on one side of the
discontinuity and not the other. These structures are hence not
perfectly plane-parallel because the magnetic field normal to the
discontinuity should be conserved. A nearly zero magnetic field
on one side implies that cR

i ' cR
s ' 0, and as a result distances

between green dashed lines and zeros are artificially expanded
by the graphs normalisation relations (34) to (37). A small error
in the determination of the frame velocity or/and the position of
the pre- or post-discontinuity positions leads to exaggerated dis-
tances between the expected and the actual position of the dots.

The match between our identification criteria and the pre-
and post-discontinuity velocity regimes is strongly dependent on
the determination of the frame in which the structure is station-
ary. We checked our three methods, and we found that steady
frame velocities obtained from the wave decomposition yield the
best consistency between the types and the expected state transi-
tion for each type of structure.

4. Results

In this section, we use our identification algorithm to extract sta-
tistical results from our simulation set. We study the impact of
some of our input parameters on dissipation structures. Our set is
composed of simulations with different magnetic Prandtl number
(Pm), and two different velocity field and magnetic field config-
urations (see table 1).

4.1. Impact of initial conditions

We consider here the effect of the initial conditions of the simu-
lations on the nature of the structures formed. Figure 12 shows
distributions of the identification scans as a function of the mean
dissipation rate in the volume probed by each scan, and table 2
summarises these results averaged over all scans. The time step
chosen for the two graphs on the left half of this figure (as well
as for the left half of table 2) is 1/3 of the initial turnover time,
shortly after the dissipation peak, when the first and most in-
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Fig. 11: The figure on the left is for ABC and the one on the right is for OT (Pm = 1), both near the dissipation peak. For each scan
we compute pre- and post-shock slow, intermediate and fast velocities. We compare fluid velocities to these characteristic speeds in
the stationary wave frame. We normalise velocities according to the pre- and post- regime following equations (34) to (37). X-axis is
the pre-shock regime and Y-axis the post-shock. Thus, each kind of discontinuity, in the classical MHD discontinuity classification,
belongs to one box. Isocontours in solid and dashed lines are computed for the two most represented kinds of profile. The zones
inside the contours delineate the densest area comprising respectively 70% (black) and 50% (orange) of the dots.

tense dissipation structures form. The time step chosen for the
right hand side of figure 12 and table 2 is after one turn-over.

1
3 tturnover tturnover

Number fraction ABC OT ABC OT
UnID 19% 29% 24% 29%
MisID 7% 12% 8% 11%

Fast shocks 3% 32% 4% 9%
Slow shocks 6% 15% 12% 14%

Rotational disc. 36% 6% 27% 21%
Parker sheet 30% 7% 25% 16%

Dissip. fraction
UnID+MisID 22% 42% 30% 38%
Fast shocks 3% 34% 4% 9%
Slow shocks 4% 11% 10% 11%

Rotational disc. 36% 5% 28% 24%
Parker sheet 34% 8% 29% 18%

Table 2: Identification fractions within our scans in number (top)
and weighted by dissipation (bottom) for several snapshots and
initial conditions in Pm = 1 simulations.

As described in section 2.1 we use two types of initial flows,
ABC and OT. The main difference between these two flows re-
sides in their magnetic and cross helicities (see subsection 2.1.2).
This initially yields very different types of structures. Early time,
OT is dominated by shocks (mainly fast shocks) while ABC
is dominated by Alfvén discontinuities (rotational discontinu-
ities and Parker sheets). After one turnover time, the impact of
the initial conditions on the formation of the dissipation struc-

tures seems to be erased. The main dissipation mechanism is
then through rotational discontinuities and Parker sheets for both
ABC and OT.

Interestingly, for both types of initial conditions, at early and
late times, the distribution of physical natures of scans does not
seem to depend on their level of dissipation. Intense dissipative
scans and weak scans have about the same proportions of each
nature.

Table 2 also shows the amount of unidentified and misiden-
tified scans. Between 58% and 78% of intense dissipation is
identified by our technique, with a greater success rate for ABC
than OT. Early time structures are also better identified than later
times.

4.2. Impact of the Prandtl number

One critical parameter of dissipation is the magnetic Prandtl
number, Pm = ν/η, the ratio of kinematic viscosity ν to mag-
netic diffusivity η (see e.g. Brandenburg & Rempel 2019). We
perform our dissipation structure analysis on simulations with a
range of magnetic Prandtl numbers, from Pm = 1 to Pm = 16
(see table 1). As dicussed in appendix B, the intrinsic numerical
dissipation from the scheme causes the effective Prandtl num-
ber to be slightly different from the input one. Thanks to semi-
analytical solutions (computed in appendix A) we probe the ef-
fective Prandtl number of our scheme in 1D MHD shocks. Fig-
ure B.4 shows that for moderate velocity shocks (or u0 ≤ 1) our
scheme is already converged while the highest shock velocities
we find in simulations are at u0 ' 5. We thus remain confident
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Fig. 12: Distribution of the different types of structure in terms of the mean scanned dissipation across the discontinuity. The black
curve is the total distribution of scans, whereas coloured curves are identified structures contribution. The white area corresponds
to unknown dissipation scans. Top plots are for ABC initial conditions, while bottom ones are for the OT flow. Distributions on the
left are at an early time (' 1/3tturnover). The right panel shows the same distribution at t = tturnover.

that the effective Prandtl number in our simulations is overall
close to the input one, at least as regards shocks.

Figure 13 shows OT and ABC identification distributions for
input Pm = 1, 4, 16: the magnetic Prandtl does not seem to have
any impact on the distribution of structures. The only notice-
able difference is a slight increase in the number of rotational
discontinuities at the expense of Parker sheets for ABC initial
conditions.

It was shown by Brandenburg & Rempel (2019) that an in-
crease in Pm causes an increase in < εv > / < εη >, a result
which we confirm and make more precise here. If there is no
statistical difference in high dissipation structures distributions,
it must be differences in the internal structure of the dissipation
layers that leads to differences in dissipation rates. On figure 14
we show scatter plots of viscous versus Ohmic dissipation rates,
where each dot marker expresses the mean of the corresponding
dissipation rate within each scan. At Pm = 1, it is clear that ro-
tational discontinuities and Parker sheets are dominated by mag-
netic energy dissipation. Fast shocks are an intermediate case,
with a more balanced share between Ohmic and viscous dissi-
pation rates. Slow shocks are dominated by viscous dissipation.
Each type of structure is more or less characterised by a given
slope in these graphs (i.e. the ratio < εv >scan / < εo >scan is
within a more or less well defined sector for each type of struc-
ture, regardless of initial conditions OT or ABC). In particular
for shocks (both slow and fast), when Pm varies, this ratio sim-
ply scales as Pm : the behaviour of dissipation within fast shock

scans follows the rule < εv >scan / < εo >scan∝ Pm. This scal-
ing is less clear for the other types of structures: Alfvén discon-
tinuities experience a wider range of ratios at fixed Pm which
makes it less easy to assess if such a scaling is present (in fact,
the envelope of green and cyan points suggests a different scal-
ing, closer to P1/2

m ). Provided the global dissipation is reflected
by intense events, this could explain why the global average ra-
tio < εν > / < εη > is also found to scale approximately as
Pm in our simulations. We therefore conclude that in our simu-
lations the increase in the viscous over Ohmic fraction when Pm
rises comes not from a difference in the nature of the dissipation
structures that form, but from a modification in the way each of
these types of structure dissipates internally.

4.3. Statistics of entrance parameters

In this section we consider values of the state variables at the
pre- and post- positions on either side of the discontinuities,
and we look for statistical differences between the various na-
tures of discontinuities. The distributions of entrance sonic Mach
numbers (see figure 15) show without surprise that the entrance
velocities are very small for Alfvén discontinuities, moderate
for slow shocks and on the order of the r.m.s. Mach number
for fast shocks, but with a wide spread distribution. Previous
work by Lehmann et al. (2016) has shown the distributions
of fast and slow shocks display exponential tails at large ve-
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Fig. 13: dissipation structures distributions for our two initial conditions with varying magnetic Prandtl number from Pm = 1 on the
left to Pm = 16 on the right. The time step shown here is at early time, near the dissipation peak.

locities. We have less statistics but our data is also consistent
with this picture. The bottom row of figure 15 displays the dis-
tributions for the entrance orthogonal Alfvénic Mach number
Ma = ũscan/(Bscan/

√
4πρ) = ũscan/cR

i . Naturally, it is above 1
for fast shocks, and below 1 for slow shocks. Its distribution
for Alfvén discontinuities is more surprising, though, with wide
spread values ranging to values even above 1, while one would
expect it to be close to zero. This comes from the fact that the
entrance velocities in these discontinuities are on the order or be-
low the sound speed, but the magnetic field happens to be almost
transverse, thus yielding very small values for the intermediate
speed cR

i . Finally, we also looked at the statistical distributions
of the density on the pre-discontinuity side, and found these dis-
tributions were independent of the nature of the discontinuity
considered.

The environment of each discontinuity is defined by 7 state
variables on either side (pre- and post-) of the discontinuity, a
total of 14 independent state variables. We can reduce this num-
ber by using the 7 conservation relations (mass, momentum and
magnetic field, -7 independent variables), a normalization by the
pre-discontinuity density (-1 variable), a rotation of the trans-
verse axes to cancel one component of the pre-discontinuity
magnetic field (-1 variable), as well as a transverse boost of
the frame to cancel the transverse velocity components pre-
discontinuity (-2 variables). The environment can thus be fully
characterized by a remainder of 3 independent variables, which
can all be considered on the pre-discontinuity side.

For these three independent ’entrance parameters’, we
choose the normal p1 and transverse p2 magnetic pressures as
well as the difference p3 between the ram pressure and the nor-
mal magnetic pressure (all are normalised by the thermal pres-
sure p = ρc2). This choice makes it easy to predict where each
discontinuity should lie in the 3D parameter space, according to
the sign of p3: negative for slow shocks, zero for Alfvén discon-
tinuities and positive for fast shocks, while p1 and p2 could be
arbitrary positive numbers.

Figure 16 displays two projections of this 3D space onto the
planes (p3, p1) and (p3, p2). In this parameter space the only
forbidden region is set by the positivity of the ram pressure
B2

scan
4π ≥ −(ρu2

scan −
B2

scan
4π ), which translates as p1 ≥ −p3. How-

ever, we find it is not the only region that is devoid of points:
the entrance parameters of our structures do not explore fully
the available parameter space. In fact, tight correlations for fast
shocks are visible on the right hand panel of figure 16 (where
ρu2

scan '
B2

scan
4π + 0.5 B2

⊥

4π ) and similarly for the slow shocks on the
left hand panel (where ρu2

scan << B2

4π ). It also appears that ro-
tational discontinuities and Parker sheets are preferably parallel
to the magnetic field (Bscan << B⊥). The latter two discontinu-
ity types are not distinguishable in this parameters space, as we
consider here only the pre- and post-discontinuity states without
taking into account the internal structure.

These statistical constraints on the three entrance parame-
ters of the dissipation structures reduce to two the number of
independent parameters. It will be the subject of future work to
understand the origin of these correlations in MHD turbulence.
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Fig. 14: Distributions of the Ohmic and viscous dissipations averaged within each scan for the ABC simulation above and OT below,
according to the different identifications and for the values of the magnetic Prandtl ranging from Pm = 1 on the left to Pm = 16 on
the right.

4.4. Transverse velocity differences

Molecular line observations probe the radial velocities across the
plane of sky, while we have access to the full three dimensional
geometry of the intense dissipation regions in our simulations.
When projected on the plane of sky, an intense dissipation sheet
yields a salient filament-like feature on observable maps where
the plane of the sheet is orthogonal to the plane of sky, i.e. where
column-density is greatly enhanced through a caustic-like effect.
On figure 17 we hence display the velocity difference statistics
projected on the two transverse directions r̂⊥1 and r̂⊥2, as a proxy
to what an observer would measure for the velocity difference
across the projected ridge of an intense dissipation sheet, in the
two cases where the line of sight is along r̂⊥1 or r̂⊥2. As ex-
pected due to rotation symmetry, rotational discontinuities have
no noticeable difference depending on the direction, while fast
and slow shocks are co-planar, hence the difference is greater
in direction r̂⊥1 than in direction r̂⊥2. What is more surprising
though is the fact that Parker sheets follow the same trend as ro-
tational discontinuities: this is an indication that there is more
continuity between the rotational discontinuity and Parker sheet
classes than what our arbitrary division between the two would
suggest. An interesting feature we also observe is the bimodality
of the slow shocks compared to the fast shocks, which is linked
to the fact that Bscan/

√
4πρ needs to be greater than the typical

velocity to yield a slow shock.
We retained the sign of the velocity differences although they

technically cannot be probed by observations, due to the un-

known projection angle. In the OT case, the positive and nega-
tive velocity differences for slow and fast shocks along r̂⊥1 have
markedly different statistics. This is due to the relative orienta-
tion between the fluid velocity and the magnetic field direction
along the scanning vector. When they have the same orientation
(i.e. Bscan = Bn > 0), transverse velocity differences have the
same sign as transverse magnetic field differences (see equation
29): in this case fast and slow shocks have respectively positive
and negative velocity differences. For the OT initial conditions,
the positive cross helicity results from a mean positive align-
ment between velocity and magnetic fields, hence a more likely
positive velocity difference for fast shocks, or negative for slow
shocks. For the ABC initial conditions, the mean cross helicity
is zero, which yields symmetric statistics.

5. Discussion

5.1. Resolution study

We performed simulations at half the resolution (5123 pixels) in
order to check the stability our results. Note that the dimensions
of our scanning cylinders are defined with respect to the pixel
size, with 3 pixels lateral radius and a 6 `ε scanning length cen-
tered on the detected local maxima of dissipation. The appropri-
ate quantity to consider is hence the average energy dissipation
rate per unit surface, or the energy flux through the surface of the
discontinuity.
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Fig. 15: PDFs of entrance sonic (top row) and Alfvénic (bottom row) Mach numbers in the Pm = 1 ABC (left) and OT (right)
simulations at time t = tturnover/3.

We consider on figure 18 the statistics of these dissipation
fluxes nature by nature for two corresponding runs at 5123 and
10243. They are seen to match perfectly, except for statistical
noise which jags the lower resolution results. Indeed, we iden-
tify approximately four times less scans at low resolution, which
is another indication that our dissipation structures are mainly
sheets.

We also find that for both N = 512 and N = 1024, `ε is on the
order of 1.5 pixels. This is consistent with our findings on 1-D
shocks in appendix B that a twice lower resolution would yield
an energy deposit twice more wide spread in the scanning direc-
tion, while keeping its integrated value constant (thanks to our
method to recover numerical dissipation). It is also a hint that the
same behaviour holds for Alfvénic discontinuities, which was
not obvious.

Finally, this is an other indication that large scale dynam-
ics set up the environmental characteristics of the discontinu-
ities (the values of the state variables of the gas on either side
of them), while the microphysics (physical and numerical dissi-
pation) control the internal profiles of these discontinuities. The
first evidence for this was uncovered with our Prandtl number
study in section 4.2.

5.2. Towards global dissipation fractions

Previously (section 2.1.2, for example), we discussed the rela-
tive distributions within our scans. However, it is unfortunately

difficult to relate it to the global dissipation in the computational
domain, because the scans focus on the most intense events.

Nevertheless, we have seen in section 3.1 that strong dissi-
pative pixels considered in this study (> 4σ) represent a large
fraction (' 25% for ABC near the dissipation peak and ' 30%
for OT) of the global dissipation rate of the simulation time step.
However, the dissipation rate exceeds this threshold only near
the peak of each scan, so the dissipation in a given scan also ac-
counts for some dissipation below that threshold. Hence, the dis-
sipation within our scans must amount to more than these global
fractions of dissipation.

Furthermore, if we had chosen a lower threshold to iden-
tify structures, we would have detected weaker scans closer to
the lateral edges of the dissipation structures. Since the propor-
tions in physical natures do not appear to depend much on the
strength of the scan, we might expect to find the same propor-
tions in these weaker scans. As a result the fractions we cur-
rently measure might apply to a more significant fraction of the
global dissipation, although it is difficult to ascertain it (overlap
between scans of neighbouring structures and lack of planarity
for some of the weaker scans might moderate the above argu-
ments). In particular, we are not able to assess whether there is a
diffuse component of dissipation, outside the intense dissipative
regions.
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Fig. 16: Entrance (pre-discontinuity) parameters for each scans we identify at time t = tturnover/3. The position of the pre-
discontinuity is defined in section 3.3 (as three times the dissipation length `ε before the dissipation peak). Top plots are for ABC
initial conditions and bottom plots are for OT ones. The x-axis is the difference between ram and magnetic normal pressures. On left
plots the y-axis represents the magnetic pressure along the scan direction and on the right ones it represents the transverse magnetic
pressure. All quantities are normalized by the thermal pressure (p = ρc2). Integrated PDFs are given on each side of the panels.
[Thibaud: manque des 4pi dans les labels]

5.3. Distribution pixel by pixel

Our method identifies a large majority of the scans we probed in
each simulation and timesteps studied. The criteria for the identi-
fication of the scans are kept in this study voluntarily strict, with
the aim to discover the structures basis causing the dissipation in
the isothermal compressible MHD regime. Although restricted
to the purest structures, we identify a significant fraction of the
total dissipation of the simulations. We mentioned in the previ-
ous section 5.2 the difficulty to relate total dissipation rates to
the scan distribution. Here, we attempt to link the distributions
of scans to the distribution of the pixels above a given threshold.
To partly remedy to overlapping problems which might occur
between scans, we flag cells above a given threshold of the sim-
ulation according to the first identification that contain them. The
resulting dissipation rate identification is shown on the top plots
of figure 19.

The black line shows the fraction of dissipation captured by
the threshold four standard deviations over the mean. The col-
ors below show the fraction of each pixels above this threshold
identified as each of the four main natures we find in our scans
(the white space combines pixels which were never flagged be-
cause they always fall in unidentified or unknown scans). This
time evolution graph clearly shows how the distributions differ
at early time for our two different initial conditions, and how they

stabilise after little bit less than one turnover time. This confirms
the result that we found for scan distributions in section 4.1.

5.4. Connectedness

Furthermore, if we consider only the well identified scans, we
observe that about 70% of the related connected structures are
identified by a single type of scan and 80% have more than 75%
of their scans identified by the same nature (see figure 20). We
can therefore consider propagating the dominant type of a con-
nected structure to the remainder of its cells. This allows to avoid
the edge effects of structures and increases the identified dissi-
pation fraction. The result is shown on the bottom plots of figure
19. This graph tells us, first of all, that the fully unidentified con-
nected structures, although representing a significant fraction of
the studied structures in number, participate very little in the to-
tal dissipation of the cube. These are small fragmented events
which also comprise the short filament-like structures seen on
figure 3. Second, we notice that the unidentified scans often be-
long to structures dominated by rotational discontinuities, except
for the OT simulations at an early time, when they are sometimes
part of fast shocks (see figure 20). For ABC runs, until about 0.7
turnover times, the dissipation generated by the Parker sheets de-
creases slightly to the benefit of that produced by the rotational
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Fig. 17: Transverse velocity differences along the two directions
r̂⊥1 (left column) and r̂⊥2 (right column) between pre- and post-
discontinuity positions. Top panels are for ABC initial condi-
tions and bottom ones for OT initial conditions. The time step of
these outputs is t ' 1/3tturnover.

10 2 10 1
0

100

200

300

ABC m = 1 N = 512
Total
Rot. disc.
Parker sheets
Fast shocks
Slow shocks

10 2 10 1

scan scan/N

0

50

100

150

200

OT m = 1 N = 512
Total
Rot. disc.
Parker sheets
Fast shocks
Slow shocks

10 2 10 1
0

500

1000

1500

Sc
an

s n
um

be
r

ABC m = 1 N = 1024
Total
Rot. disc.
Parker sheets
Fast shocks
Slow shocks

10 2 10 1

scan scan/N

0

200

400

600

800

Sc
an

s n
um

be
r

OT m = 1 N = 1024
Total
Rot. disc.
Parker sheets
Fast shocks
Slow shocks

Fig. 18: Nature by nature distributions of dissipation flux per
scan in our Pm = 1, 10243 simulations (left panels) and in our
5123 simulations (right) at t = 1/3tturnover.

discontinuities (bottom right panel of figure 19). This implies
that despite the uniqueness of the identifications within a related
structure, a significant fraction of the Parker sheets are found
within structures formed by rotational discontinuities, which re-
lates to our previous remarks on the continuity between Parker-
Sheets and rotational discontinuities: our divide between the two
is rather arbitrary and these connected structures could probably
be gathered into a single Alfénic discontinuity class.

We also tried to decrease the detection threshold of the dis-
sipation structures to εcorr

tot =< εcorr
tot > +2σεcorr

tot
to increase the

fraction of the total identified dissipation. In this case, the iden-
tification rate decreases only by a few percent compared to a
threshold of εcorr

tot =< εcorr
tot > +4σεcorr

tot
. The contribution of the

different natures to the overall dissipation remains similar and
the fraction of dissipation above threshold identified by the scans
increases by about 10% overall.

5.5. Unknown identifications

By using two sets of criteria which are rather independent, we
have biased our identifications towards more false negative and
less false positives. Thus, there remains many scans misidenti-
fied because they either do not fit any of our heuristic criteria
(unidentified scans) or because the two sets of criteria do not
match (misidentified scans). We list here some of the reasons
why our identification criteria might miss a significant fraction
of the scans.

The main culprits are "edge" scans. These are scans at the
periphery of structures where the main direction of the gradient
is less well defined and therefore the scanning direction is less
relevant. For instance, the scanning direction is irrelevant in the
case of the small filament-like structures observed in figure 3
and 20, where scans probably fall at least in the misidenditified
category. Also, when two structures are too close to each other,
the heuristic part of the identification is confused, because bumps
or jumps are less well defined. Note the wave decomposition
suffers less from adjacent structures, because it is sensitive only
at the cell scale. Some of the unidentifications could also be due
to the presence of intermediate shocks (see section 5.6 below)
but we reckon they probably account for a small fraction only.

Given the strong correlation between our two sets of crite-
ria for identification (heuristic and ideal waves), one could sug-
gest to use only ideal wave decomposition to greatly increase the
identification rate. We would thus reach 100% of identification,
but our results would then be subject to caution, and would be bi-
ased toward false positives. Indeed, one should restrict this wave
only decomposition to the most planar cells where the gradient
approach makes sense. Also, the identification would then rely
on the velocity regimes, which we have shown can be subject to
caution depending on the method to estimate the travelling speed
of the discontinuities.

5.6. Intermediate shocks

If intermediate shocks are present in our simulations, our heuris-
tic criteria would voluntarily miss them, and they would fall in
the unidentified category. Indeed, these shocks have either a den-
sity or a pressure jump, but display a magnetic field trough. We
chose not to add this criterion here because we would not have
had an independent criterion on gradients to solidify this heuris-
tic one. This might be a reason why we get less identification
in the OT case at early times, which seems more prone to gen-
erate shocks. We have in fact attempted to target intermediate
shocks, and have found some convincing cases. However, the
uncertainty on our estimate for the steady state velocity of these
discontinuities makes it difficult to validate the speed regimes of
these shocks on a statistically significant population. We hence
decided to postpone our investigation on these shocks. In any
case, the fraction of unidentification that we publish here puts an
upper limit on the fraction of intermediate shocks.

6. Conclusions and prospects

The aim of the present study is to systematically characterise the
physical nature of intense extrema of dissipation in MHD simu-
lations of turbulence. We develop a technique to recover locally
the total dissipation including the numerical losses. We tested
the classic rule of thumb that grid based simulations need twice
the resolution of similar spectral schemes: in this case, we find
that numerical dissipation is indeed below a half of the total, but
dissipative fronts are widened by a factor of about three. Since
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Fig. 19: Top plots : Fraction of the total dissipation high dissipation structure contribute to (black line) and the contribution of cells
that belong to a scan that is identified (coloured areas) for OT and ABC initial conditions simulations. Bottom plots : We use the
most represented identification in each structure and attribute the total dissipation rate of the structure to this kind. This method is
supported by the fact that we find connected structures to be mainly made of one kind of discontinuity.

Fig. 20: High dissipation structures extracted from an OT initial
conditions simulation at Pm = 1. The time step of this output is
t ' 1/3tturnover.

to get to the expected thickness would require an extra factor
of ten in resolution, we feel the current usage provides a good
compromise.

We devise a way to characterise the geometry and the phys-
ical nature of local intense variations of the state variables of

the gas. We find the non-linear waves associated with these
large gradients and disclose their Rankine-Hugoniot category.
We show that at the dissipation peak, the fully dissipative gra-
dients must be close to an ideal MHD wave gradient. We ob-
serve that the nature of this gradient is surprisingly consistent
throughout the profile of the dissipation structure. For example,
fast shocks are composed of essentially fast wave gradients and
we confirmed it with the 1D semi-analytical models of isother-
mal shocks of appendix A. We use this property to our advantage
and we design a method to classify the dissipation structures into
fast shocks, slow shocks, Parker sheets and rotational disconti-
nuities. We successfully identify a large majority of the intense
dissipation, which allows us to draw statistical conclusions.

We show that initial conditions can strongly affect the na-
ture of the dissipation structures at early times. However, early
signatures of the initial conditions are quickly lost after about
one turnover time. At this time, dissipation becomes dominated
by weakly compressive structures (Alfvén discontinuities rather
than shocks). This may be due to the sonic Mach number hav-
ing decreased closer to one at this point, and we will investigate
higher Mach numbers in the future as well as more compressive
initial conditions.

Despite the complexity of the magnetised 3D flows we inves-
tigated in this study, strongest dissipation structures are locally
plane and steady and can be assimilated to Rankine-Hugoniot
discontinuities. We noted unexpected correlations between the
entrance parameters of these discontinuities (which can be re-
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duced to a 2-parameters family): further work is needed to ex-
plain how these correlations arise in a turbulent medium.

We compare three methods to measure the traveling speed of
these non-linear waves, and check the resulting velocity regimes
are compatible with our identifications. The difficulty to accu-
rately measure the traveling speed makes it impossible to assess
the statistics of the elusive intermediate shocks, although we re-
port we could find clear examples of them (not shown in this
paper).

The access to an accurate traveling speed will facilitate the
follow-up of structures in time, which will help discover if the
statistical changes with respect to time are due to collisions (or
breading) between structures, birth or death of given structures,
possible changes in nature of a given structure in time or to the
development of substructures and instabilities within a struc-
ture. We do not find strong evidence for the slow shocks be-
ing more subject to corrugation instability as originally found
by Park & Ryu (2019). In general, connected structures appear
equally fragmented regardless of their various natures (see figure
20), but a more quantitative study might conclude otherwise. It
seems to us Alfvénic discontinuities are often found in parallel
sub-layered systems, while fast shocks often occur in isolation,
but here again a quantitative analysis might conclude otherwise.

One may challenge the applicability of such simplified
isothermal MHD simulations to a medium as complex as the in-
terstellar medium. However, the present study hints that to some
extent the details of the microphysics matter only within the in-
ternal structure of discontinuities. For example, the statistics of
the entrance parameters do not change when Pm is varied. This
is reminiscent of the study by Brandenburg (2014) who sug-
gested that variations with Pm were controlled by the individual
1D structure of the shocks, and it is also echoed in the review
of reconnection Zweibel & Yamada (2016) which focuses on
the respective roles of global and local processes. If this holds,
one could imagine post-processing the statistics from 3D simu-
lations with more detailed 1D models including non-equilibrium
chemistry, such as the Paris-Durham shock models (Flower et al.
1985; Flower & Pineau des Forêts 2015), for example, as was
demonstrated in Lesaffre et al. (2020) for 2D unmagnetised tur-
bulence.

The ultimate objective is to estimate the turbulent dissipation
rate in diffuse matter and its characteristics in the broad perspec-
tive of unravelling molecular cloud growth and star formation
(e.g. Hennebelle & Falgarone 2012). The fall-off (or the absence
of fall-off at small scales) of power spectra of a variety of trac-
ers of diffuse interstellar matter (e.g. Miville-Deschênes et al.
2016) is a key information to be combined with the kinetic in-
formation provided by high-spectral resolution observations of
either atomic gas (e.g. Reach & Heiles 2021) or molecular lines
(Hily-Blant et al. 2008; Falgarone et al. 2009). This latter route is
of course challenging because it requires the modelling of non-
equilibrium chemistry driven by dissipation bursts.

Conversely, our multidimensional simulations suggest im-
provements to 1D traditional models. Indeed, although the struc-
tures we find are mostly plane-parallel, we find that the main
deviation from 1D profiles is mass loss sideways into the dissi-
pative sheet. In the future, we can imagine to refine 1D models
by including such mass-loss, as did Parker in his fiducial Parker-
sheet model, for example (Parker 1963).

Finally, we are convinced that the tools we put forward in this
paper will give more ground to the view of developed turbulence
as a statistical collection of coherent structures. For example, a
careful series of works (e.g. Zhdankin et al. 2013, 2014, 2015,
2016) on the dissipation structures in reduced MHD has led to

new insights on the analytics of intermittency and turbulent dy-
namics by Mallet & Schekochihin (2017). Density statistics de-
viations from log-normal were explained by an appropriate col-
lection of shocks in Robertson & Goldreich (2018). Recent de-
velopment in the theory of anisotropic compressible MHD turbu-
lence use to their advantage the statistics of shocks (Beattie et al.
2021). In the meantime, Cluster satellites observations (Perrone
et al. 2016, 2017) have witnessed the signatures of both Alfvén
and compressive coherent structures in the fast and slow com-
ponents of the solar wind. Recent developments in solar wind
observations may soon be able to constrain the statistics of the
various individual types of dissipation structures (Bruno & Car-
bone 2013).
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Appendix A: Steady-state 1D MHD shocks

Here we consider the internal structure of a steady-state isother-
mal planar MHD shock. We can always operate a Galilean trans-
formation to place ourselves in the frame moving along with the
shock, so that the pre-shock velocity is along the normal of the
working surface, which we define as the first space coordinate
x. In addition, we can rotate this frame along the normal so that
the second space coordinate y is along the pre-shock transverse
magnetic field, and so both third components z of the magnetic
field and the velocity are zero along the whole shock (thanks to
the co-planarity property within shocks: this would not be the
case in a rotational discontinuity).

We write u and 3 for both the first and second coordinates
of the velocity in this frame, and similarly we write Bx and By
the coordinates of the magnetic field (orthogonal to the working
surface and transverse). We finally write ρ the mass density and
x the first space coordinate.

With these notations, the isothermal conservation of mass,
momentum and magnetic field become:

0 = ∂x(ρu) (A.1)

0 = ∂x[ρu2 + ρc2 +
1

8π
B2

y +
4
3
µ∂xu] (A.2)

0 = ∂x[ρu3 +
1

4π
ByBx + µ∂x3] (A.3)

0 = ∂xBx (A.4)
0 = ∂x[uBy − 3Bx + η∂xB] (A.5)

where we introduced the dynamical viscosity µ = ρν and the re-
sistivity η coefficients as well as the isothermal sound speed c.
We now affect subscripts 0 to the pre-shock quantities (except for
the orthogonal magnetic field Bx which is constant throughout
the shock). The mass conservation becomes ρu = ρ0u0. We de-
fine the quantity a = By/

√
4πρ0 which has the dimension of a ve-

locity, and similarly the constant Alfvén speed ax = Bx/
√

4πρ0
to arrive at the system of ordinary differential equations :

4
3
µ

ρ0
∂xu = u0 +

c2

u0
− (u +

c2

u
) +

1
2

(
a2

0

u0
−

a2

u0
) (A.6)

µ

ρ0
∂x3 = ax

a − a0

u0
− 3 (A.7)

η∂xa = ua − u0a0 − ax3 (A.8)

to compute the internal structure of isothermal MHD shocks.
The isothermal dynamical coefficient µ is a constant, but in

the current application, we used a constant viscous coefficient ν,
so that µ = νρ0u0/u. The typical viscous length scale of our
simulated shocks is hence ν/u0. One can further simplify the
above system by using non-dimensional quantitites x̃ = xu0/ν,
ũ = u/u0, 3̃ = 3/u0, ã = a/a0 and Pm = ν/η:

4
3ũ
∂x̃ũ = 1 − ũ +M−2

s (1 −
1
ũ

) +
1
2
M−2

a (1 − ã2) (A.9)

1
ũ
∂x̃3̃ = ũã − 1 − 3̃ (A.10)

∂x̃ã =Pm[M−2
a (ã − 1)

ax

a0
− 3̃] (A.11)

which shows that the intrinsinc structure of our shocks de-
pends essentially on three non-dimensional parameters in the
pre-shock: the sonic Mach number Ms = u0/c, the transverse
Alfvénic Mach numberMa = u0/a0 and the tangent of the angle

of the magnetic field with respect to the shock working surface
ax/a0.

This system of ordinary differential equations (ODEs) can
be integrated numerically between the preshock (at ũ = ã = 1
and 3̃ = 0) and the post-shock. The stability analysis towards
increasing x̃ of these two steady points yields three growing or
decaying eigenvectors. We find fast shocks usually have three
unstable eigenvectors at the pre-shock while they have three sta-
ble eigenvectors at the post-shock: one can simply integrate the
system of ODEs from the post-shock to the pre-shock from a
small perturbation of the post-shock opposite to the most stable
eigenvector (which is the most unstable one in the direction of
decreasing x̃). We find slow shocks usually have two unstable
eigenvectors at the pre-shock while they have two stable eigen-
vectors at the post-shock: the solution leaves the pre-shock from
its unstable plane, and reaches the post-shock in a stable plane.
To find the solution, we use a boundary value solver with a re-
quest to be on both these planes at a small given distance from
the two corresponding end points.

We use the resulting solutions as reference models to bench-
mark the results of the dedicated experiments which are de-
scribed in the section below.

Appendix B: Numerical dissipation in Godunov
methods

We report here on the method we used to recover the amount
of numerical dissipation present in our compressible simula-
tions, and how we validated it using the above isothermal MHD
shocks.

In our compressible simulations, we adopt twice the resolu-
tion of corresponding incompressible runs which we performed
with pseudo-spectral methods in Momferratos et al. (2014): 1024
vs 512, for the same dissipation coefficients (viscosity and resis-
tivity). Indeed, there is a common belief that grid based methods
need twice as many elements to obtain a resolving power equiv-
alent to Fourier elements. However, we will see that even in this
case, the numerical scheme still affects considerably the dissipa-
tion in the code.

Experimental set-up

In order to check and control the dissipation in our configura-
tion, we run 1D planar isothermal magnetized shocks with var-
ious resolutions, and compare them to the solutions devised in
the previous section. To set up the computational experiments of
this section, we first compute the Rankine-Hugoniot conditions
for a magnetised shock in the frame of the shock and we set up
initially the pre-shock and post-shock conditions in two halves
of the computational box, with the jump in the middle. The outer
box boundaries are inflow and outflow conditions on each side
of the pre-shock and post-shock material, respectively. As the
computation proceeds, the initial discontinuity smears out due
to both numerical and physical dissipation but the discontinuity
does not move in space thanks to the chosen set up. A steady-
state is quickly reached, which we compare to semi-analytical
solutions of the steady state as described in the previous subsec-
tion.

Viscous spread in the shock

Shocks have a viscous spread on the order of λv = ν/u0 (see sec-
tion A). Our 3D simulations of decaying turbulence with 10243
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pixels have box length Lbox = 2π and viscosity ν = 0.7×10−3 and
so the pixel size is nearly 9 times bigger than the viscous length
for a u0 = 1 shock: the viscous and resistive spread throughout
these shocks is realised essentially by the grid. We showed in
Lesaffre et al. (2020) that the number of zones necessary to fully
resolve the viscous spread of isothermal shocks is at least on the
order of the Reynolds number L.u0/ν ' 9000, way above what
we can afford for a 3D computation.

Dissipation natures

There are several sources of dissipation in our simulations: vis-
cous and Ohmic dissipation due to the physical terms we have in-
troduced in DUMSES, and numerical dissipation intrinsic to the
scheme. Our main purpose is to locally recover the total amount
of dissipation εtot produced by both the scheme and the physi-
cal dissipation terms. We design here several methods to retrieve
εtot, by considering variants of the energy conservation equation.

Method 1

Consider the evolution equation of kinetic and magnetic energy:

∂t(
1
2
ρu2 +

1
8π

B2) + ∇.F1 + u.∇(p) = −εtot (B.1)

where εtot is the total irreversible heating and where the flux
F1 reads:

F1 = u(
1
2
ρu2) +

1
4π

(B × u) × B − νS.u + ηJ × B. (B.2)

We compute the left hand side of equation (B.1) along a re-
play of a time step of the simulation, using the flux estimates
of each dissipative half-step for the resistive and viscous contri-
butions to F1 and using a Lax-Friedrichs estimate for its non-
dissipative part (evaluated within the Godunov step). We esti-
mate u.∇(p) at the middle of the time step thanks to the same
TVD (total variation diminishing) slopes used in the Godunov
step. Finally, we recover εtot simply by taking the opposite of the
left hand side.

Method 2

∂t(
1
2
ρu2 +

1
8π

B2 + p log ρ) + ∇.F2 = −εtot (B.3)

where

F2 = F1 + up(log ρ + 1). (B.4)
We compute the flux as in method 1 (the additional contri-

bution is computed in the Godunov step using a Lax-Friedrichs
estimate). This method has the advantage that we recover ex-
actly the total heating through the computational domain when
we average the local resulting heating.

Method 3

∂t(
1
2
ρu2 +

1
8π

B2) + ∇.F3 − p∇.u = −εtot (B.5)

where
F3 = F1 + up. (B.6)
We evaluate −p∇.u as u.∇(p) in method 1, and retrieve εtot as in
the previous two methods.

Fig. B.1: Dimension-less dissipation in a steady-state fast shock
(with dimension-less parameters u0 = 1, Bx/

√
4π = 0.2,

By
0/
√

4π = 0.3, and c = 0.25 with η = ν = 0.7 × 10−3) for vari-
ous resolutions (dashed colored lines, N is the number of pixels)
compared to the analytical solution from the previous section
(solid line).

Benchmark and comparison

We checked that the implementations of the three methods on
our shock experiments yield the same local total dissipation rate
to within less than 1% of the peak dissipation. This gives us con-
fidence in our implementation of the three methods. We also
checked on two actual snapshots of our simulations (ABC and
OT runs after one turnover) that the statistics of the three meth-
ods are nearly identical for the distribution of positive values for
the retrieved dissipation εtot. However method 2 yields signifi-
cantly less pixels with negative values, presumably because this
methods does not require an estimate for terms like p∇.u and
−u.∇(p) which are not divergences of fluxes. We further note
that the means of method 2 and 3 are really close to one another
(by less than 0.5% of the standard deviation of εtot), while 1 and 2
are a bit further apart (by less than 3% of the standard deviation,
though). We therefore adopt method 2 as the best compromise
between methods 1, 2 and 3.

Numerical convergence

Figure B.1 shows the irreversible heating rates in non-
dimensional units at a close-up of a fast shock front. It illustrates
the convergence of the total dissipation rate profile for increasing
resolutions. We integrated the total dissipation across the shock
and checked it matched the theoretical value obtained by com-
puting the difference of the flux F2 between pre-shock and post-
shock values. The integral of the total dissipation rate across the
shock is thus always preserved. The effect of the resolution is
only to smear out the dissipation profile without changing its to-
tal amount.

Figure B.1 is similar to figure A2 of Lesaffre et al. (2020),
but here for magnetised isothermal shocks instead of hydrody-
namic adiabatic shocks. It demonstrates that the resolution con-
vergence for the heating rate is very slow and fully obtained only
for N = 8192 (see the dashed lines approaching the black solid
line on Fig. B.1). The situation corresponding to our 3D simula-
tions is the red curve (N = 1024): the viscous heating is largely
underestimated and spread out by about a factor 3.
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Fig. B.2: Comparison of the profiles of various state variables
of the gas for the same fast shock as Fig. B.1 between the results
of our simulation at N = 1024 (dotted lines) and the best-fit
model (solid line). Best fit coefficients are ν = 2.2 × 10−3 and
η = 1.7 × 10−3 (input coefficients are η = ν = 0.7 × 10−3).

Note that for a factor two larger velocity, the analytical solu-
tion yields a twice thinner dissipation peak, so that the numerical
spread would be even larger compared to what it should be. Had
we used a constant dynamical viscous coefficient µ, the viscous
spread would respond to density in addition to velocity, and the
situation would be even worse on the dense side of the shock,
or for shocks penetrating denser material. Finally, note that such
a slow convergence rate (at most 30% better accuracy for each
doubling of the resolution) could lure an unaware numericist into
thinking his/her simulations are converged...

Dissipative coefficients fit

We fit viscous isothermal MHD shock models of section A to
the velocity and magnetic field profiles, and we recover best fit
values for the viscosity and the resistivity coefficients which al-
low us to retrieve the effective viscous and resistive coefficients
of our numerical scheme in the case of magnetised shocks. This
is a complementary method to what Lesaffre & Balbus (2007)
proposed for non-linear Alfvén waves.

Figure B.2 shows the comparison between the semi-
analytical models of the previous section for the best fit η and
ν and the actual profile for the same shock as in Fig. B.1 and a
resolution of N = 1024 pixels. Note that the density is not as ac-
curate as the other variables, and so we discarded it from the fit
to retain only the velocity and magnetic fields components. This
is because the mass flux conservation ρu is estimated at inter-
faces, and the extrapolation of ρ and u which are one increasing
while the other is decreasing makes it worse for the product. On
the other hand, all other conserved quantities have a product of
quantities either both increasing or decreasing, which renders the
extrapolation more accurate for the product.

We show on Fig. B.3 an exploration of the effective viscosity
thus recovered when varying the resolution. The effective vis-
cosity tends to the actual input value when the resolution in-
creases, which illustrates in an independent way the numerical
convergence explored in the previous subsection. Because faster
shocks have a smaller viscous spread, the effective viscosity is
larger for faster shocks, with a required resolution proportional
to the entrance velocity of the shock. The type (slow or fast) of

Fig. B.3: Comparison between the fitted ν and the input ν (dotted
black line) for various resolutions and three different shocks. A
slow shock (u0 = 0.8, Bx/

√
4π = 1, By

0/
√

4π = 0.2), a fast
shock (u0 = 1, Bx/

√
4π = 0.2, By

0/
√

4π = 0.3, same as Fig. B.2)
and another fast shock 4 times faster (u0 = 4, Bx/

√
4π = 0.2,

By
0/
√

4π = 0.3).

Fig. B.4: Comparison between the effective Pm and the input
Pm (dotted black line) for various resolutions and the two fast
shocks of figure B.3 (solid lines for u0 = 1 and dashed lines
for u0 = 4). Pm was varied by keeping the value of the resistive
coefficient η = 0.7 × 10−3 fixed while varying the value of the
viscous coefficient accordingly ν = ηPm.

the shock does not seem to affect much the effective diffusivity
of the scheme. At poor resolution, the effective viscosity is in-
versely proportional to the zone number. Our chosen resolution
N = 1024 corresponds to the end of this linear relation between
resolution and scheme diffusion: higher resolution would yield a
relatively lower increase of accuracy.

We also explored the capacity of the scheme to account for
various Prandtl numbersPm by increasing the viscous coefficient
with respect to the resistive coefficient. Because the scheme in-
creases the diffusivity, the overall span for the Prandtl number is
not as wide as for the input physical value. The situation is even
worse for the larger velocity shocks, but a resolution of 1024 pix-
els still allows to probe a comfortable range of Pm. Slow shocks
at Pm > 1 are not sensitive to the Prandtl number, and so they
could not be used to probe its effective value due to the numer-
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Fig. B.5: Our numerical estimation (dashed) of the total (black)
Ohmic (red) and viscous (blue) dissipation in the same fast shock
as Fig. B.1 compared to the actual quantities in the best-fit model
(solid lines with corresponding colors). Note that the correct
share between Ohmic and viscous dissipation relies on the ef-
fective Pm being close to the actual input value of Pm, so that
the method we use is worse for larger velocity shocks.

ical scheme. This is because when Pm > 1 in slow shocks, the
magnetic fields profiles are dominated by the kinetic to magnetic
energy transfers as the resistive terms becomes negligible.

Ohmic vs. viscous dissipation

Although thanks to our method we gained access to the total
numerical dissipation, we could not find an accurate way to sep-
arate the numerical dissipation of magnetic fields from the nu-
merical dissipation of kinetic energy. In order to compute cor-
rected values for the viscous heating and the Ohmic heating,
we simply shared between each of them the total numerical
heating in proportion to their relative physical values, namely:
εcorr.

v = εtotεv/(εv + εo) for viscous dissipation and conversely
for Ohmic dissipation εcorr.

o = εtotεo/(εv + εo). Whenever our
estimate for the purely numerical dissipation is negative (i.e:
εtot < εv + εo), we simply set εcorr.

v = εv and εcorr.
o = εo. We then

compute the viscous and Ohmic heatings in the best fit shock
model and compare them to the above estimation on figure B.5.

Summary

We control the implementation of our dissipation rate recovery
method by comparing several variants of it and we benchmark
them against analytical solutions. We find that we are able to re-
cover the total dissipated energy within a localised shock to a
very good precision. We use the benchmark models to estimate
the diffusivity of the scheme and we find that the effective vis-
cosity and resistivity are both enhanced due to lack of resolution,
especially for the large velocity shocks. As a result, the effective
Prandtl number is also affected. On the other hand, the slow con-
vergence to the shock solution justifies our use of a moderate
resolution associated to this dissipation recovering method: we
would not gain much by running our simulations at twice the cur-
rent resolution, while we would have to increase the resolution
more than ten-fold to dispense ourselves with this dissipation re-
covery method.

Prospects

The numerically acute reader will have noted that our method is
currently limited to Lax-Friedrichs implementations of the Rie-
mann solver. Other Riemann solvers require that we design how
to incorporate the additional components of the fluxes Fi. We
checked slow and fast shocks, and they seem equally well treated
at equivalent velocities. But we did not check the effective diffu-
sivities in rotational discontinuities (although non-linear Alfvén
waves such as used in Lesaffre & Balbus (2007) may provide
a good guess) or Parker sheets (these require at least a two-
dimensional treatment).
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